当前位置:主页 > 科技论文 > 铸造论文 >

仿生超疏水表面的制备及其海水腐蚀防护性能研究

发布时间:2018-05-29 13:41

  本文选题:海洋环境腐蚀 + 仿生超疏水表面 ; 参考:《中国科学院大学(中国科学院海洋研究所)》2017年硕士论文


【摘要】:海洋环境腐蚀极大的制约着人类开发利用海洋资源的步伐,腐蚀不但带来了巨大的经济损失,还会引起突发性的灾难,带来惨重的人员伤亡。近年来,通过改变金属材料表面的润湿性来提高其腐蚀防护性能引起了研究人员的广泛兴趣。本研究通过水热法、低温浸泡法、阳极氧化法和电化学沉积法在金属锌/铜表面构建了不同微观结构的超疏水表面,研究了不同反应条件对微/纳米粗糙表面润湿性的影响规律;在表面分析的基础上,基于Cassie理论模型分析了固 液 气复合表面的润湿性;最后评价了仿生超疏水表面在模拟海水中的腐蚀防护性能,揭示了仿生超疏水表面在海水环境中的腐蚀防护机制。结果如下:(1)采用水热—表面修饰两步法在金属锌表面制备了正六边形棒状阵列结构的超疏水表面,其接触角为162.6±3°。优化了制备棒状阵列结构的反应条件,通过X射线衍射(XRD)和X射线光电子能谱(XPS)分析了超疏水膜的化学成分,提出了ZnO的形成机制;利用Cassie公式计算出固 液接触面积占复合表面的8.88%;极化曲线测试结果证实:ZnO超疏水表面具有优异的腐蚀防护性能,可以有效的保护金属锌不被腐蚀,原因是ZnO棒状阵列缝隙中截留的空气层有效的将腐蚀性介质和金属基底隔离开。(2)通过低温浸泡—表面修饰两步法在金属锌基底上制备了排列规则的纳米针锥结构的超疏水表面,其接触角为169.4±3°。探索了不同反应条件对试样表面润湿性的影响规律,通过XRD和XPS分析了超疏水膜的化学成分,通过Cassie公式计算得到固 液接触面积在复合表面中仅占3.31%;利用极化曲线评价了Zn(OH)_2超疏水表面的腐蚀防护性能,揭示了Zn(OH)_2超疏水表面在海水环境中的腐蚀防护机制。(3)以金属铜作为基底材料,通过阳极氧化—表面修饰两步法制备了尖锐针状结构的Cu(OH)_2超疏水表面,其接触角为162.7±3°。研究了阳极氧化反应中不同制备条件对试样表面润湿性的影响规律,在表面分析的基础上,利用Cassie公式计算出固 液接触面积在复合表面中仅占8.78%;电化学测试结果表明:Cu(OH)_2超疏水表面具有良好的腐蚀防护性能,揭示了Cu(OH)_2超疏水表面在海水环境中的腐蚀防护机制。(4)以金属铜作为基底材料,通过电化学沉积—表面修饰两步法制备了“金字塔”形纳米针锥结构的镍层超疏水表面,其接触角为168.5±3°。研究了电化学沉积过程中纳米针锥的生长机理及表面形貌与润湿性之间的关系,通过XRD和XPS分析了超疏水膜的化学成分,Cassie理论模型计算出固 液的接触面积仅占复合表面的3.90%;极化曲线表明:镍层超疏水表面具有优异的腐蚀防护性能,这种防护能力归因于超疏水表面的镀镍层、含氟硅烷自组装膜和纳米针锥空隙中截留的空气层三者共同作用,且纳米针锥缝隙中截留的空气层起主要作用。
[Abstract]:The corrosion of marine environment greatly restricts the pace of human exploitation and utilization of marine resources. Corrosion not only brings huge economic losses, but also causes sudden disasters and brings heavy casualties. In recent years, the improvement of corrosion protection performance by changing the wettability of metal surface has attracted extensive interest of researchers. Superhydrophobic surfaces with different microstructure were constructed on zinc / copper surfaces by hydrothermal method, low temperature immersion method, anodic oxidation method and electrochemical deposition method. The effect of different reaction conditions on the wettability of micro / nano rough surface was studied, and the wettability of solid liquid / gas composite surface was analyzed on the basis of surface analysis and Cassie model. Finally, the corrosion protection performance of bionic superhydrophobic surface in simulated seawater was evaluated, and the corrosion protection mechanism of bionic superhydrophobic surface in seawater environment was revealed. The results are as follows: (1) the hyperhydrophobic surface of hexagonal rod-like arrays was prepared on the surface of zinc by hydrothermal and surface modification with a contact angle of 162.6 卤3 掳. The reaction conditions for preparing rod arrays were optimized. The chemical composition of superhydrophobic films was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the formation mechanism of ZnO was proposed. By using Cassie formula, the contact area of solid solution is calculated to account for 8.88% of the composite surface. The results of polarization curve test show that the superhydrophobic surface of the superhydrophobic surface has excellent corrosion protection performance and can effectively protect metal zinc from corrosion. The reason is that the air layer trapped in the gap of ZnO rod array can effectively isolate corrosive medium from metal substrate. (2) the regular superhydrophobic surface of nano-needle cone structure was prepared on zinc substrate by two steps of low temperature soaking and surface modification. The contact angle was 169.4 卤3 掳. The influence of different reaction conditions on the surface wettability of the sample was investigated. The chemical composition of the superhydrophobic film was analyzed by XRD and XPS. The contact area of solid solution is only 3.31% of the composite surface calculated by Cassie formula, and the corrosion protection performance of Zn(OH)_2 superhydrophobic surface is evaluated by polarization curve. The corrosion protection mechanism of Zn(OH)_2 superhydrophobic surface in seawater environment was revealed. The surface of Cu(OH)_2 with acutely acicular structure was prepared by anodic oxidation and surface modification with a contact angle of 162.7 卤3 掳. The influence of different preparation conditions on the wettability of the sample surface in anodic oxidation reaction was studied. By using Cassie formula, the contact area of solid solution is only 8.78% of the composite surface, and the electrochemical test results show that the superhydrophobic surface of the superhydrophobic surface has good corrosion protection performance. The corrosion protection mechanism of Cu(OH)_2 superhydrophobic surface in seawater environment was revealed. The superhydrophobic nickel layer was prepared by electrochemical deposition and surface modification with copper metal as substrate. The contact angle was 168.5 卤3 掳. The growth mechanism of nano-needle cone and the relationship between surface morphology and wettability during electrochemical deposition were studied. The chemical composition of the superhydrophobic film was analyzed by XRD and XPS. The contact area of the solid solution was only 3.90% of the composite surface, and the polarization curve showed that the superhydrophobic surface of the nickel layer had excellent corrosion protection. The protective ability is attributed to the nickel plating layer on the superhydrophobic surface, the interaction of fluorinated silane self-assembled film and the air layer intercepted in the nanoscale cone gap, and the main role of the retained air layer in the nano-needle cone gap.
【学位授予单位】:中国科学院大学(中国科学院海洋研究所)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG174.4

【参考文献】

相关期刊论文 前6条

1 叶春波;;中国腐蚀成本惊人 一年超过2万亿元[J];石油化工腐蚀与防护;2016年06期

2 侯保荣;;海洋钢结构浪花飞溅区腐蚀防护技术[J];中国材料进展;2014年01期

3 冯立超;贺毅强;乔斌;于雪梅;;金属及合金在海洋环境中的腐蚀与防护[J];热加工工艺;2013年24期

4 任彦忠;王利民;;海上风电塔筒防腐系统的选择与运用[J];风能;2012年04期

5 周常蓉;朱卫华;;海洋环境下钢结构的腐蚀机理[J];科协论坛(下半月);2008年09期

6 侯保荣;海洋环境腐蚀规律及控制技术[J];科学与管理;2004年05期

相关博士学位论文 前1条

1 张泓筠;超疏水表面微结构对其疏水性能的影响及应用[D];湘潭大学;2013年

相关硕士学位论文 前1条

1 赵明星;Fe-Al金属间化合物的制备及其耐海洋环境腐蚀性能的研究[D];中国海洋大学;2007年



本文编号:1951079

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1951079.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ec1a7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com