车削1Cr18Ni9Ti粘焊变质层特性研究
本文选题:1Cr18Ni9Ti + 车削 ; 参考:《哈尔滨理工大学》2017年硕士论文
【摘要】:奥氏体不锈钢1Cr18Ni9Ti应用广泛,但其加工硬化明显,切削加工性能较差,为满足不同工况下不同的加工,需要人们对此有新的探讨。本文针对加工不锈钢材料这种相对较“粘”材料出现的刀-屑粘焊现象进行研究,深入分析硬质合金刀具切削奥氏体不锈钢1Cr18Ni9Ti刀-屑粘焊现象明显这一问题。凭借数值模拟及试验等技术手段获得粘焊的热力特性、刀-屑粘焊产生基础和演化以及粘焊变质层对加工工况的作用规律,为后续的粘焊变质层形成机理以及损伤演化提供理论试验基础,对进一步提高刀具的加工精度以及使用寿命,增加刀具的抗粘焊能力具有深厚的现实意义。首先,采用数值仿真软件Deform-3D建立切削模型并细化主要分析区域,实现硬质合金刀具对奥氏体不锈钢1Cr18Ni9Ti的车削模拟,获得前刀面刀-屑接触区域的温度场规律、切屑形态以及刀具磨损状态,确定刀-屑粘焊不同于一般刀具失效形式,为后续研究刀具粘焊变质层提供理论基础。其次,进行1Cr18Ni9Ti的车削试验,提取车削力范围,并通过超景深显微镜观测粘焊变质层的位置及大小,应用ANSYS Workbench模拟刀具前刀面粘焊变质层加载过程,获得刀-屑粘焊区域的应力分布特性,确定不同粘焊状态对前刀面的作用规律。再次,利用热成像仪采集前刀面刀-屑粘焊区域切削温度,依据曲面响应法采用Design-expert建立刀-屑粘焊区域的映射模型,并对模型的可靠性进行验证,获得不同参数交互作用下切削温度变化趋势以及粘焊状态,借助MATLAB对该二阶响应模型进行最优化求解,对实际加工中的切削参数选取进行补充分析。最后,通过试验及仿真综合分析获得粘焊变质层演化规律,确定其出现及稳定的材料属性以及热、力条件基础。分析刀具表面裂纹的扩展及汇集过程,揭示表面裂纹和刀-屑粘焊的相互作用规律。
[Abstract]:Austenitic stainless steel (1Cr18Ni9Ti) is widely used, but its working-hardening is obvious, and its cutting performance is poor. In order to meet the different working conditions, it needs to be discussed. In this paper, the phenomenon of cutter chip bonding in machining stainless steel material is studied, and the obvious phenomenon of cutting austenitic stainless steel 1Cr18Ni9Ti tool and chip bonding with cemented carbide tool is analyzed. By means of numerical simulation and test, the thermal characteristics of bonding, the foundation and evolution of tool chip bonding, and the effect of the modified layer on the working conditions are obtained. It provides a theoretical experimental basis for the formation mechanism and damage evolution of the modified layer in subsequent bonding welding. It is of great practical significance to further improve the machining accuracy and service life of the tool and to increase the ability of the tool to resist bonding and welding. Firstly, the numerical simulation software Deform-3D is used to set up the cutting model and refine the main analysis area, to realize the turning simulation of austenitic stainless steel 1Cr18Ni9Ti with cemented carbide tools, and to obtain the temperature field law of the front tool face cutter chip contact region. Chip shape and tool wear state determine that the tool chip bonding is different from common tool failure, which provides a theoretical basis for further study on the modified layer of tool adhesion welding. Secondly, the turning test of 1Cr18Ni9Ti was carried out, the turning force range was extracted, and the position and size of the modified layer were observed by the depth of field microscope, and the loading process of the modified layer was simulated by ANSYS Workbench. The stress distribution characteristics of the tool-chip bonding area are obtained and the action law of different bonding states on the front tool face is determined. Thirdly, using thermal imager to collect the cutting temperature of the front tool face cutter and chip bonding welding area, according to the surface response method, the mapping model of the tool chip bonding welding area is established by using Design-expert, and the reliability of the model is verified. The changing trend of cutting temperature and bonding state under the interaction of different parameters are obtained. The second-order response model is solved optimally by MATLAB, and the selection of cutting parameters in actual machining is analyzed. Finally, the evolution law of the modified layer is obtained by means of test and simulation, and the appearance and stability of the modified layer are determined, as well as the basis of the thermal and force conditions. The process of surface crack propagation and collection is analyzed, and the interaction between surface crack and cutter chip bonding is revealed.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG51
【相似文献】
相关期刊论文 前10条
1 李建明;靳九成;李学谦;夏宗禹;;大型铁路轴承表面变质层研究[J];湖南大学学报;1989年03期
2 郭涛;王笃诚;;关于电火花线切割变质层的研究[J];电子工艺技术;1991年02期
3 仰书介;磨削变质层状态在线监视仪[J];轴承;1992年03期
4 李崇豪,,赵向东;陶瓷材料电加工后变质层厚度的研究[J];江苏理工大学学报;1996年04期
5 马伏波;陈树峰;;已加工表面变质层的研究[J];煤矿机械;2013年06期
6 殷玲,刘忠,陈日曜;大理石抛光表面变质层的研究[J];磨料磨具与磨削;1993年02期
7 田欣利,徐燕申,彭泽民,林彬;陶瓷磨削表面变质层的产生机理[J];机械工程学报;2000年11期
8 田欣利,林允森,张纾,时小军;高温结构陶瓷精密磨削塑性变质层的物理模型[J];装甲兵工程学院学报;2002年01期
9 林述温,曹瑞涛,莫开旺;轴承沟道磨削变质层与磨削工艺参数关系的研究[J];机械工艺师;1997年01期
10 林述温,莫开旺;轴承沟道磨削工艺参数对磨削变质层的影响规律[J];磨床与磨削;1997年01期
相关会议论文 前2条
1 郑富强;邹丹;臧海天;;硬质合金线切割加工变质层的形成及对材料性能的影响[A];2009全国粉末冶金学术会议论文集[C];2009年
2 张小亮;王兆希;施惠基;;电火花成型对试样表面微观力学性能的影响[A];第16届全国疲劳与断裂学术会议会议程序册[C];2012年
相关硕士学位论文 前7条
1 何俊生;钛合金薄壁窄槽电加工试验研究[D];南京航空航天大学;2016年
2 宋良杰;电火花线切割工艺参数对高碳马氏体不锈钢变质层的影响[D];上海交通大学;2015年
3 王婷;超高强度钢磨削表面变质层研究[D];西北工业大学;2015年
4 秦泗伟;高速干硬切削表面变质层动态再结晶的有限元—元胞自动机耦合模拟与预测[D];大连理工大学;2016年
5 冯景洋;车削1Cr18Ni9Ti粘焊变质层特性研究[D];哈尔滨理工大学;2017年
6 杨永衡;淬硬模具钢已加工表面变质层的研究[D];哈尔滨理工大学;2015年
7 王静;Cr12MoV线切割电参数优化及变质层研究[D];华中科技大学;2012年
本文编号:1970797
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1970797.html