当前位置:主页 > 科技论文 > 铸造论文 >

基于RBF神经网络的强力旋压连杆衬套力学性能预测研究

发布时间:2018-06-11 17:10

  本文选题:强力旋压 + 旋压工艺参数 ; 参考:《锻压技术》2016年06期


【摘要】:针对难以运用公式来表达强力旋压连杆衬套工艺参数与力学性能之间的复杂关系问题,建立了旋压工艺参数(减薄率、热处理温度、进给比)与力学性能(布氏硬度、伸长率、屈服强度、抗拉强度)之间的径向基函数(RBF)神经网络模型。用实验所得的数据对RBF神经网络进行训练,再用训练好的RBF神经网络对成形件的力学性能进行预测,通过与实测值对比分析,并与用BP神经网络所建模型的预测结果进行比较,发现RBF神经网络模型具有较BP神经网络更优的预测性能。RBF神经网络模型预测能力强、建模时间短、能有效提高连杆衬套工艺的设计效率和降低实际实验的所需成本。
[Abstract]:It is difficult to express the complex relationship between the technological parameters and mechanical properties of the strong spinned-link bushing. The spinning process parameters (thinning rate, heat treatment temperature, feed ratio) and mechanical properties (Brinell hardness, elongation, etc.) and mechanical properties (such as thinning rate, heat treatment temperature, feed ratio) and mechanical properties (Brinell hardness, elongation) are established. The radial basis function (RBF) neural network model between yield strength and tensile strength. The experimental data are used to train RBF neural network and then the trained RBF neural network is used to predict the mechanical properties of formed parts. The results are compared with the measured data and compared with the prediction results of the model built by BP neural network. It is found that RBF neural network model has better prediction performance than BP neural network. RBF neural network model has better prediction ability and shorter modeling time. It can effectively improve the design efficiency of connecting rod bushing process and reduce the cost of actual experiment.
【作者单位】: 中北大学机械与动力工程学院;
【基金】:山西省自然科学基金资助项目(2012011023-2) 山西省高校高新技术产业化项目(20120021)
【分类号】:TG306;TP183

【相似文献】

相关期刊论文 前10条

1 雷明,李作清,陈志祥,吴雅,杨叔子;神经网络在预报控制中的应用[J];机床;1993年11期

2 杨自厚;神经网络技术及其在钢铁工业中的应用第8讲人工神经网络在钢铁工业中的应用(下)[J];冶金自动化;1997年05期

3 李润生,李延辉,胡学军,刘壮,王守俭;神经网络在冶金中的应用[J];钢铁研究;1998年02期

4 刘海玲,刘树深,尹情胜,夏之宁,易忠胜;线性神经网络及在多组分分析中的初步应用[J];计算机与应用化学;2000年Z1期

5 王继宗,王西娟;用神经网络确定梁上裂纹位置的研究[J];煤炭学报;2000年S1期

6 赵学庆,袁景淇,周又玲,贺松;生物发酵过程神经网络状态预报器的验证[J];无锡轻工大学学报;2000年06期

7 李智,姚驻斌,张望兴,贺超武;基于神经网络的混匀配料优化方法[J];钢铁研究;2000年04期

8 胡敏艺,马荣骏;神经网络在冶金工业中的应用[J];湖南有色金属;2000年05期

9 倪建军,邵琳;利用神经网络进行观测数据的分析与处理[J];连云港化工高等专科学校学报;2000年04期

10 裴浩东,苏宏业,褚健;材料工程中基于神经网络的稳态优化策略[J];材料科学与工程;2001年02期

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 曾U喺,

本文编号:2006045


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2006045.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户27cd2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com