半固态触变挤压对ZA27合金组织和力学性能的影响
本文选题:ZA合金 + Sc变质 ; 参考:《材料工程》2017年06期
【摘要】:通过与常规铸造方法的比较,研究半固态触变挤压对ZA27合金变质、热处理组织和力学性能的影响。结果表明:半固态挤压态合金的密度较铸态合金提高了3%,合金经Sc变质或者半固态挤压都获得了细小而均匀的近似球状组织,而Sc变质结合半固态挤压的球状组织具有最高的圆整度;经T6热处理的半固态挤压合金由细小的初生α相和共析(α+η)组织组成,说明半固态挤压可促进ε相溶解、减少三元共晶(β+η+ε)组织的含量。力学性能测试表明,ZA27合金经半固态挤压+Sc变质+T6热处理后其抗拉强度,伸长率和布氏硬度分别达到586.01MPa,17.57%及171HB。
[Abstract]:The effect of semi-solid thixotropic extrusion on modification, heat treatment and mechanical properties of ZA27 alloy was studied by comparing with conventional casting method. The results show that the density of the semi-solid extruded alloy is increased by 3% than that of the as-cast alloy. The alloy obtained fine and uniform spherical structure by SC modification or semi-solid extrusion. The spherical microstructure with SC modification combined with semi-solid extrusion has the highest degree of roundness, and the semi-solid extruded alloy after T6 heat treatment consists of fine primary 伪 phase and eutectoid (伪 畏) structure, which indicates that semi-solid extrusion can promote 蔚 phase dissolution. The content of ternary eutectic (尾 畏 蔚) was reduced. The mechanical properties test showed that the tensile strength, elongation and Brinell hardness of ZA27 alloy after semi-solid extrusion SC modified T6 heat treatment reached 586.01MPA (17.57%) and 171HB, respectively.
【作者单位】: 昆明理工大学材料科学与工程学院;
【基金】:国家自然科学基金资助项目(51164019) 云南省应用基础研究重点项目资助(2010CC004) 昆明理工大学创新团队项目资助(2010-2015)
【分类号】:TG146.13;TG249.2
【相似文献】
相关期刊论文 前10条
1 ;力学性能二级人员取证复习参考题(之一)解答[J];理化检验(物理分册);1997年12期
2 ;力学性能二级人员取证复习参考题(之三)解答[J];理化检验(物理分册);1998年04期
3 陈金宝;高温力学性能二级人员取证复习参考题(持久部分之五)解答[J];理化检验(物理分册);2000年02期
4 李长林;孙中仁;;关于40CrNiMo钢力学性能问题的讨论[J];大型铸锻件;2013年04期
5 吴全兴;实用钛合金的力学性能和工程[J];钛工业进展;1994年06期
6 李光新,马新沛,孙学山;含碳量对预应力混凝土钢筋力学性能的影响[J];金属热处理;2000年05期
7 史光亮,寇劲松;低碳拉丝钢盘条力学性能改进试验[J];甘肃冶金;2000年04期
8 赵中平;;工艺性能是否属于力学性能[J];发电设备;2013年04期
9 王松林;;热处理方法对碳钢艉轴力学性能的影响[J];大型铸锻件;1989年04期
10 余宗森,袁泽喜,李定秀,李士琦,武骏;鞍钢钢材成分与其力学性能的定量关系[J];北京科技大学学报;1997年05期
相关会议论文 前10条
1 李和田;;253MA钢高温力学性能的测定[A];2008全国MTS断裂测试研讨会论文集[C];2008年
2 段东明;任池锦;;高性能高层建筑结构用钢力学性能与组织研究[A];第5届中国金属学会青年学术年会论文集[C];2010年
3 陆琪;罗月新;计波;;热处理对7715D高温钛合金组织及力学性能的影响[A];第十四届全国钛及钛合金学术交流会论文集(下册)[C];2010年
4 马兴涛;王德龙;;锰含量和工艺参数对低碳钢力学性能的影响[A];山东省金属学会理化检验学术委员会理化检验学术交流会论文集[C];2009年
5 李泾;孙洪刚;赵宪明;;特殊钢轧制过程力学性能预报[A];2006年全国轧钢生产技术会议文集[C];2006年
6 于国财;吴林志;马力;;碳纤维铝合金层板的力学性能和失效行为研究[A];中国力学大会——2013论文摘要集[C];2013年
7 杨桂瑜;;酸洗液浓度对盘条力学性能的影响[A];纪念《金属制品》创刊40周年暨2012年金属制品行业技术信息交流会论文集[C];2012年
8 陈驹;熊永光;周瑛琦;薛文;金伟良;;新型建筑钢材在高温下的力学性能劣化研究[A];2011中国材料研讨会论文摘要集[C];2011年
9 费翠萍;;稀土镧、镨对铝导线导电性能和力学性能的影响[A];全国第十二届轻合金加工学术交流会论文集[C];2003年
10 宁军;刘世余;;提高康明斯K38缸体力学性能的工艺措施[A];重庆市机械工程学会铸造分会、重庆铸造行业协会2010重庆市铸造年会论文集[C];2010年
相关重要报纸文章 前3条
1 ;热轧带钢力学性能在线监控系统(待续)[N];世界金属导报;2001年
2 王华;大厚度海洋平台用钢的组织和力学性能[N];世界金属导报;2013年
3 余万华;CQE-热轧钢卷的力学性能控制模型[N];世界金属导报;2009年
相关博士学位论文 前6条
1 任小勇;地质工程用高性能无钴硬质合金的制备、结构及力学性能研究[D];中国地质大学(北京);2016年
2 蔡志辉;高强塑性中锰钢的组织演变及力学性能的研究[D];东北大学;2015年
3 黄礼新;CLAM钢高温组织演变与力学性能研究[D];燕山大学;2014年
4 罗丹;镁—锡—锌镁合金的组织控制和力学性能[D];吉林大学;2015年
5 夏志新;低活化钢中析出型相变及其对力学性能的影响[D];清华大学;2011年
6 马炳东;脉冲电流对高强度钢组织与力学性能的影响及数值模拟分析[D];吉林大学;2014年
相关硕士学位论文 前10条
1 裴旺;磁控溅射制备V-Al-Ta-N四元涂层结构及其性能研究[D];昆明理工大学;2015年
2 蔡宝壮;超细晶铜基合金塑性变形机理及力学性能的研究[D];昆明理工大学;2015年
3 尹晓君;含Ca、Sb的Mg-xAl-yZn-zSi合金组织与性能研究[D];陕西理工学院;2015年
4 张雨溪;改性陶瓷粉体对铸造锌铝合金组织及性能影响的研究[D];大连交通大学;2015年
5 刘玲丽;变面循环轧制AZ31镁合金微观组织与力学性能研究[D];南京理工大学;2015年
6 魏东;稀土Ce对H13钢组织和力学性能的影响[D];内蒙古工业大学;2015年
7 张剑;磁控溅射纳米硬质膜工艺及力学性能研究[D];沈阳理工大学;2015年
8 张U,
本文编号:2081159
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2081159.html