多工位独立式高速冲压机械手的研制
本文选题:多工位独立式冲压机械手 + 结构优化 ; 参考:《深圳大学》2017年硕士论文
【摘要】:随着产业的转型升级,用工成本的增加,制造业必须对现有的设备进行现代化升级,用更先进的自动化设备代替传统生产设备,或替代人工生产。而作为基础制造业的冲压行业来说,其绝大多数的中小企业的生产是依靠人工来完成的,不但生产效率低,劳动强度高,而且工作环境恶劣,使企业生产成本急剧上升。因此,实现冲压生产的自动化有着迫切的需求。为提高企业的生产效率,降低工人劳动强度,改善工人工作环境,需要研制一种多工位独立式高速冲压机械手,以实现冲床上下料的自动化及运输的无人化。通过对企业的实地考察,了解了电机机壳的冲压加工生产的工艺以及现有冲压生产线冲床的布局及各冲床的结构参数,并查阅了关于冲压成型的工作原理和冲床冲压的相关文献资料,针对企业生产的实际情况,提出了上下料机械手的整体方案。本文首先阐述了机械手的产生历史、发展过程,然后叙述了机械手在世界各国的应用情况和未来的发展趋势,并在论述了本项目的研究背景和意义后,结合电机机壳的冲压工艺和冲床的布局及结构参数,对比各种设计方案的特点,确定了本项目中所设计的机械手总体方案。其次根据机械手的总体设计方案,对完成机械手各动作的横向驱动模块、上下料模块、端拾器模块、中转站模块进行结构设计,同时完成各零件的结构设计,并完成三维建模。在利用计算机辅助设计软件SolidWorks完成对机械手所有零部件的建模后,将所设计的零部件装配成完整的设备。为减小机械手的惯性,使机械手运动更加灵活,也使控制精度更高,应减小机械手的质量。因此首先利用ANSYS Workbench完成对手部零件的静力学分析,求解手部零件的最大应力、最大总变形,在确保其最大应力和最大总变形不超过允许的情况下,对手部零件进行形状优化设计,去除不必要的材料,达到减少手部零件质量的目的。在形状优化设计后,再进行多目标参数优化设计,使零件在满足工作条件的情况下,使其尺寸结构达到最优。然后根据机械手的工作条件,对伺服电机、滑块导轨等标准件进行选型与计算,使选择的标准件在满足使用要求的情况下,充分发挥其工作性能,同时也降低生产成本。最后,对本项目完成的内容进行总结,并针对项目研制过程中未解决的问题提出展望。
[Abstract]:With the transformation and upgrading of industry and the increase of labor cost, the manufacturing industry must modernize and upgrade the existing equipment, replace traditional production equipment with more advanced automation equipment, or replace manual production. As the basic manufacturing industry, the majority of the production of small and medium-sized enterprises depends on labor, not only low production efficiency, high labor intensity, but also bad working environment, which makes the production cost of enterprises rise sharply. Therefore, the realization of stamping production automation has an urgent need. In order to improve the production efficiency, reduce the labor intensity of the workers and improve the working environment of the workers, it is necessary to develop a multi-station independent high-speed stamping manipulator to realize the automation of charging and unloading of the punching machine and the inhumanity of transportation. Based on the field investigation of the enterprise, the process of punching production of motor housing, the layout of punching machine and the structure parameters of each punching machine are understood. The working principle of stamping forming and the related documents of punching machine were consulted, and the whole scheme of upper and lower manipulator was put forward according to the actual production situation of enterprises. This paper first describes the history and development of manipulator, then describes the application of manipulator in the world and the development trend in the future, and discusses the research background and significance of this project. Combined with the stamping process of the motor housing and the layout and structural parameters of the punching machine, compared with the characteristics of various design schemes, the overall scheme of the manipulator designed in this project was determined. Secondly, according to the overall design scheme of manipulator, the structure design of lateral driving module, loading and unloading module, end picker module and transfer station module are carried out. At the same time, the structural design of each part is completed, and the 3D modeling is completed. After the modeling of all parts of manipulator is completed by SolidWorks, the designed parts are assembled into complete equipment. In order to reduce the inertia of the manipulator, make the manipulator motion more flexible and make the control precision higher, the quality of the manipulator should be reduced. Therefore, the static analysis of hand parts is completed by using ANSYS Workbench, and the maximum stress and total deformation of hand parts are solved, in case that the maximum stress and total deformation do not exceed the allowable value. Optimize the shape of hand parts, remove unnecessary materials and reduce the quality of hand parts. After the shape optimization design, the multi-objective parameter optimization design is carried out, so that the dimension and structure of the parts can be optimized when the working conditions are satisfied. Then according to the working conditions of the manipulator, the servo motor, slider guide and other standard parts are selected and calculated, so that the selected standard parts can give full play to their working performance and reduce the production cost. Finally, the contents of the project are summarized, and the unsolved problems in the project development are prospected.
【学位授予单位】:深圳大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG385;TP241
【参考文献】
相关期刊论文 前10条
1 李海龙;王恒斌;李林涛;王栋;;一种气缸选型模拟计算方法[J];液压气动与密封;2014年09期
2 刘伟;;同步带选型中的问题分析[J];科技信息;2013年19期
3 LI Jing;TONG Shu-rong;LIU De-teng;;Customer-oriented Configuration Model for Modular MechatronicProducts: Application in Industrial Robot Design[J];International Journal of Plant Engineering and Management;2013年02期
4 梅亮;刘景林;付朝阳;;电磁铁吸力计算及仿真分析研究[J];微电机;2012年06期
5 王勇;;惯性匹配在伺服电动机选型中的应用[J];金属加工(冷加工);2011年15期
6 李宇剑;巢明;;我国工业机器人产业现状与发展战略探讨[J];制造业自动化;2010年15期
7 杨玉萍;季彬彬;;同步带传动中张紧轮安装位置的优化设计[J];南通大学学报(自然科学版);2010年01期
8 王军锋;唐宏;;伺服电机选型的原则和注意事项[J];装备制造技术;2009年11期
9 刘湘晨;蔡晓君;蒋力培;方徐应;;机器人运动学分析与求解方法的探讨[J];机床与液压;2009年08期
10 孙传琼;刘雍德;任爱华;;同步带的初拉力及其控制[J];机械工业标准化与质量;2009年07期
,本文编号:2095889
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2095889.html