针对难加工材料的刀具可靠性建模及其分析方法研究
本文选题:刀具 + 难加工材料 ; 参考:《电子科技大学》2017年硕士论文
【摘要】:《中国制造2025》中明确提出“在航天、汽车、机床等重点领域集中开展数控机床专项成果的应用验证,全面推进国产数控系统、功能部件和刀具的研发和配套应用,最终实现机床智能化”。刀具作为数控加工的一个重要部件,其可靠性直接影响到整个加工过程的加工效率和稳定性。因此,开展刀具可靠性分析,具有重要的理论和现实意义。对刀具进行可靠性分析时,需要获得刀具退化数据。为了获得刀具退化数据,本文针对难加工材料进行刀具切削加工实验,由于加工工况、现场环境等各方面因素的限制,难以获得大量的实验数据。针对此“样本小、数据乏”的难题,引入Bayes(贝叶斯)方法对经验信息进行综合。在该理论基础上,本文围绕刀具退化数据开展刀具可靠性分析,具体研究内容主要包括以下三个方面:(1)为了得到刀具在某一固定时刻可靠度值,本文提出了一种基于退化量分布模型的刀具可靠性分析方法。该方法通过确定某一固定时刻刀具退化数据分布,结合Bayes理论,计算刀具在某一固定时刻可靠度值。为了得到刀具可靠度随时间的变化趋势,本文在假设刀具失效分布已知的基础上,对刀具进行可靠性分析。(2)为了模拟出刀具的退化过程,本文提出了一种基于退化过程模型的刀具可靠性分析方法。该方法在未考虑个体差异的条件下,基于Bayes理论,对刀具退化模型中的参数进行更新,实现了对刀具退化过程的模拟和刀具可靠性分析。同时,由于同一刀盘上的刀具退化过程存在差异,本文提出了一种考虑个体差异的随机过程模型的可靠性分析方法,该方法得到了刀具可靠度随时间的变化趋势。(3)为了对上述两种方法进行验证,本文实施了难加工材料数控加工实验。此实验在考虑了切削用量对切削效率影响的条件下,设计了三因素三水平正交实验。每组切削用量下,进行10次切削加工,收集了大量的实验数据,并运用此数据对上述方法进行验证。此外,在此实验中除了采集到刀具磨损量数据外,采集到的实验数据还包括:振动信号,表面粗糙度和工件切屑数据。基于此数据对刀具磨损状态进行多角度监测,形成了比较全面的刀具切削加工数据库。通过对刀具磨损量分析,证明本文提出的方法可以很好地对刀具进行可靠性评估,为数控加工工艺规划和机床刀具智能选择提供了理论支撑。
[Abstract]:The "made in China 2025" clearly states that "in key areas such as aerospace, automobiles, machine tools, and other key areas, we will concentrate on the application and verification of special achievements in numerical control machine tools, and comprehensively promote the development and matching application of domestic numerical control systems, functional components and cutting tools." Finally realize the intelligent machine tool "." As an important part of NC machining, tool reliability directly affects the machining efficiency and stability of the whole machining process. Therefore, it has important theoretical and practical significance to carry out tool reliability analysis. It is necessary to obtain tool degradation data for tool reliability analysis. In order to obtain the tool degradation data, this paper carries on the tool cutting experiment to the difficult machined material, because of the processing condition, the field environment and other factors' limitation, it is difficult to obtain a large amount of experimental data. In order to solve the problem of "small sample and lack of data", Bayes (Bayesian) method is introduced to synthesize the empirical information. Based on this theory, the tool reliability analysis is carried out around the tool degradation data. The specific research contents include the following three aspects: (1) in order to obtain the tool reliability value at a fixed time, In this paper, a tool reliability analysis method based on degenerate distribution model is proposed. In this method, the tool degradation data distribution at a fixed time is determined, and the reliability of the tool at a fixed time is calculated by combining Bayes theory. In order to obtain the change trend of tool reliability with time, this paper analyzes the tool reliability based on the assumption that the tool failure distribution is known. (2) in order to simulate the process of tool degradation, In this paper, a tool reliability analysis method based on degenerate process model is proposed. Based on Bayes theory, the parameters of tool degradation model are updated, and the simulation of tool degradation process and tool reliability analysis are realized. At the same time, due to the difference of tool degradation process on the same cutter head, this paper presents a reliability analysis method of stochastic process model considering individual differences. The change trend of tool reliability with time is obtained by this method. (3) in order to verify the above two methods, the NC machining experiment of difficult machining material is carried out in this paper. In this experiment, considering the effect of cutting parameters on cutting efficiency, a three-factor three-level orthogonal experiment was designed. Under each set of cutting parameters, 10 cutting processes were carried out, a large number of experimental data were collected, and the above method was verified by using this data. In addition, in addition to the tool wear data, the experimental data include vibration signal, surface roughness and chip data. Based on this data, the tool wear state is monitored from various angles, and a more comprehensive tool cutting database is formed. Through the analysis of tool wear, it is proved that the method presented in this paper can evaluate the reliability of the tool well and provide theoretical support for NC machining process planning and tool intelligent selection.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG71
【参考文献】
相关期刊论文 前10条
1 李芷筠;戴志辉;焦彦军;;小样本失效数据下保护可靠性的贝叶斯-蒙特卡罗评估方法[J];电力系统及其自动化学报;2016年05期
2 卢秉恒;;全社会协同创新,推进“中国制造2025”[J];金属加工(冷加工);2016年02期
3 王新刚;吕春梅;王宝艳;闫明明;;硬质合金刀具的动态可靠性及失效率研究[J];东北大学学报(自然科学版);2015年06期
4 赵志草;宋保维;王鹏;;单元服从Gamma退化过程的共载表决系统可靠性[J];华中科技大学学报(自然科学版);2015年04期
5 张石平;王智明;杨建国;;机床刀具可靠性及寿命评估[J];计算机集成制造系统;2015年06期
6 管强;汤银才;;基于Gamma过程加速退化试验的优化设计(英文)[J];应用概率统计;2013年02期
7 王细洋;龙亮;郭敏;;基于振动信号的刀具状态监控技术研究[J];南昌航空大学学报(自然科学版);2011年03期
8 刘奇先;刘杨;高凯;;钛合金的研究进展与应用[J];航天制造技术;2011年04期
9 刘瑞江;张业旺;闻崇炜;汤建;;正交试验设计和分析方法研究[J];实验技术与管理;2010年09期
10 潘正强;周经伦;彭宝华;;基于Wiener过程的多应力加速退化试验设计[J];系统工程理论与实践;2009年08期
相关会议论文 前1条
1 蒋仁言;黄超群;;加速寿命试验:适用性、问题和挑战[A];2012年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第四次全体委员大会论文集[C];2012年
相关博士学位论文 前5条
1 杨圆鉴;基于退化模型的机械产品可靠性评估方法研究[D];电子科技大学;2016年
2 殷增斌;高速切削用陶瓷刀具多尺度设计理论与切削可靠性研究[D];山东大学;2014年
3 徐亮;原位一体化制备棒晶增韧陶瓷刀具及其磨损可靠性研究[D];山东大学;2013年
4 彭宝华;基于Wiener过程的可靠性建模方法研究[D];国防科学技术大学;2010年
5 赵建印;基于性能退化数据的可靠性建模与应用研究[D];国防科学技术大学;2005年
相关硕士学位论文 前4条
1 薛庆华;铣削淬硬45钢和40Cr钢的刀具寿命可靠性研究[D];山东大学;2013年
2 李精忠;铣削加工稳定性与刀具可靠性研究[D];大连理工大学;2013年
3 冯浩;Ti-6Al-4V钛合金高速铣削表面完整性研究及切削参数数据库开发[D];山东大学;2008年
4 周献振;基于贝叶斯方法的可靠性评估研究[D];华中科技大学;2007年
,本文编号:2101125
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2101125.html