水下药芯焊丝湿法焊接熔滴过渡行为研究
本文选题:湿法焊接 + 过渡行为 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:随着海洋事业的不断发展,我国对水下焊接技术的需求日益提高。水下湿法焊接基于其操作简单、通用性强、经济性好等优势,目前已广泛应用于水下焊接领域,但由于缺少焊接防护措施,水下湿法焊接存在焊接电弧不稳定、焊接冶金损失严重、焊缝成形较差等诸多问题。水下湿法焊接中存在的问题与熔滴过渡形式密切相关,由于水环境及水下压力的存在,水下湿法焊接的熔滴过渡过程具有一定的特殊性。本研究针对水下药芯焊丝湿法焊接熔滴过渡过程展开了相关理论研究工作,不仅填补了水下湿法焊接熔滴过渡领域理论研究的空白,而且为水下湿法焊接熔滴过渡行为的控制提供理论支撑。基于X射线高速成像与电信号同步采集系统,观测了水下湿法焊接熔滴过渡行为,并根据熔滴过渡行为的不同划分了熔滴过渡形式,探索了熔滴过渡形式随焊接参数的转换条件。研究表明,根据熔滴过渡行为的不同,水下湿法焊接基本熔滴过渡形式分为排斥过渡、短路过渡以及“潜弧过渡”;根据排斥角大小的不同,排斥过渡可分为大角度排斥过渡与小角度排斥过渡,根据短路过渡阶段的不同,短路过渡可分为短路表面张力过渡与短路爆炸过渡;同一焊接参数下,熔滴过渡形式不是单一的,而是由三类基本过渡形式按一定比例组成,称为混合过渡;随着焊接参数的改变,混合过渡形式中基本过渡形式的种类及比例、熔滴直径及过渡频率均发生相应改变。基于静力学平衡理论,构建了水下湿法焊接熔滴过渡受力模型,探索了焊接参数对熔滴过渡行为的影响机理,并通过流体软件FLUENT模拟了水下湿法焊接上升气泡对熔滴过渡行为的影响。分析指出:在水下湿法焊接中,熔滴受到内部作用力和外部作用力的共同作用,内部作用力指气体动力,外部作用力包括表面张力、重力、电磁收缩力、等离子流力、斑点压力以及气体拖拽力。与陆上焊接不同,在水下湿法焊接中由于受到水环境的冷却作用,焊接电弧冷却收缩,等离子流力对熔滴过渡的促进作用减弱,电磁收缩力方向与熔滴过渡方向相反,阻碍熔滴过渡;上浮气泡与熔滴相互作用,产生气体拖拽力,该力是水下湿法焊接中特有的作用力,对熔滴过渡起到阻碍、排斥作用。焊接参数通过改变熔滴受力条件,影响熔滴的过渡行为,包括熔滴过渡形式、熔滴直径及过渡频率。通过对不同过渡形式下的焊接电信号、熔滴过渡影像、焊接飞溅及焊后试件进行分析,研究了熔滴过渡行为对焊接电弧稳定性、焊缝成形及焊接飞溅的影响,研究表明在水下湿法药芯焊丝焊接过程中,当混合过渡形式以短路过渡和小角度排斥过渡为主时,熔滴过渡平稳,焊接电弧燃烧稳定,焊接飞溅产生频率较低,焊缝成形均匀;当混合过渡形式以大角度排斥过渡或“潜弧过渡”为主时,焊接电弧燃烧不稳定,易于产生焊接飞溅,熔滴易对焊件产生冲击,焊缝两侧易于产生焊瘤缺陷,焊缝成形较差。
[Abstract]:With the continuous development of marine industry, the demand for underwater welding technology is increasing in our country. Underwater wet welding is widely used in underwater welding field based on its advantages of simple operation, strong generality and good economy. But because of lack of welding protection measures, the welding arc is unstable and metallurgical loss exists in underwater wet welding. There are many problems such as bad weld formation and so on. The problems in underwater wet welding are closely related to the form of droplet transition. Due to the existence of water environment and underwater pressure, the process of droplet transition in underwater wet welding has certain particularity. The research work not only fills the gap of theoretical research in the field of droplet transition in underwater wet welding, but also provides theoretical support for the control of droplet transition behavior in underwater wet welding. Based on X ray high-speed imaging and electrical signal synchronous acquisition system, the behavior of droplet transition in underwater wet welding is observed, and the transition behavior of droplets is different according to the droplet transition behavior. The transition form of droplet transition is divided. The transition form of droplet transition with welding parameters is explored. According to the different transition behavior of droplets, the basic droplet transition forms in underwater wet welding are divided into rejection transition, short circuiting transition and "submerged arc transition", and the rejection transition can be divided into large angle rejection according to the difference of the repulsive angle. Transition and small angle exclude transition, according to the different short circuit transition stage, short circuit transition can be divided into short circuit surface tension transition and short circuit explosion transition. Under the same welding parameters, the form of droplet transition is not single, but is composed of three kinds of basic transition forms, which are called mixed transition, and mixed with the change of welding parameters. The type and proportion of the basic transition form in the ferry form, the droplet diameter and the transition frequency are all changed correspondingly. Based on the static equilibrium theory, a model of the droplet transition under water wet welding is constructed, and the influence mechanism of the welding parameters on the droplet transition is explored, and the underwater wet welding up gas is simulated by the fluid software FLUENT. The effect of bubble on the transition behavior of droplet is analyzed. It is pointed out that in underwater wet welding, the droplet is affected by the interaction of internal force and external force, the internal force refers to the gas power, and the external forces include surface tension, gravity, electromagnetic contractile force, plasma force, speckle pressure, and gas drag force. Due to the cooling effect of water environment in the wet process welding, the welding arc is cooled and contracted, the plasma flow force promotes the droplet transition, and the direction of the electromagnetic contractile force is opposite to the droplet transition direction, which hinders the droplet transition, and the floating bubbles interact with the droplets to produce the drag force. This force is a special work in underwater wet welding. The transition behavior of droplets is affected by the force conditions of the droplet transfer, which affects the transition behavior of droplets, including the form of droplet transition, the droplet diameter and the transition frequency. Through the analysis of the welding signal, the droplet transition image, the welding spatter and the post weld specimen under different transition forms, the droplet is studied. The effect of crossing behavior on welding arc stability, weld formation and welding spatter shows that in the process of underwater wet wire welding wire welding, when the mixed transition form is dominated by short circuiting transition and small angle rejection transition, the transition of the droplet is stable, the welding arc is stable, the welding joint spatter is low, and the weld is formed evenly; when mixing, the weld is formed evenly. When the transition form is dominated by large angle rejection transition or "submerged arc transition", the welding arc combustion is unstable and easy to produce welding spatter. The droplets are prone to impact on the welding parts, and the welding defects on both sides of the weld are easy to produce, and the weld formation is poor.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG401
【相似文献】
相关期刊论文 前10条
1 包晔峰;周昀;吴毅雄;吴玉光;姚河清;;熔化极气体保护焊熔滴过渡研究[J];电焊机;2006年03期
2 彭海燕;黄石生;蒋东;柯利涛;王振民;;脉冲MIG焊熔滴过渡控制的发展现状[J];焊接技术;2007年01期
3 ;熔滴过渡时产生飞溅的原因[J];电焊机;2009年05期
4 陆爱红;熔化极气体保护焊的熔滴过渡[J];铁道机车车辆工人;1997年12期
5 云绍辉,柳刚,韩国明;熔化极气体保护焊熔滴过渡检测方法现状与展望[J];电焊机;1998年04期
6 柳刚,李桓,韩国明,李俊岳,张宝红;应用光谱技术进行熔化极气体保护焊熔滴过渡的研究[J];焊接技术;2000年01期
7 胡胜钢,李俊岳,李桓,杨立军,杨运强;脉冲MIG焊熔滴过渡光谱控制法的研究[J];机械工程学报;2001年09期
8 杨运强,李俊岳,张晓囡,李桓,范荣焕,杨立军;脉冲MIG焊熔滴过渡控制的新进展[J];机械工程学报;2002年11期
9 杨运强,李俊岳;熔滴过渡光谱传感器原理及测控效果[J];北京工业大学学报;2005年02期
10 李芳;华学明;王卫彬;吴毅雄;;脉冲熔化极气体保护焊熔滴过渡电信号特征及建模[J];焊接学报;2009年07期
相关会议论文 前9条
1 李俊岳;柳刚;韩国明;;利用电弧光谱研究熔化极气体保护焊的熔滴过渡[A];第九次全国焊接会议论文集(第2册)[C];1999年
2 柳刚;李俊岳;李桓;;MIG焊电弧光谱的动态特征[A];第九次全国焊接会议论文集(第2册)[C];1999年
3 郭大勇;区智明;孟庆华;;二氧化碳焊接熔滴过渡的检测与控制[A];第九次全国焊接会议论文集(第2册)[C];1999年
4 张强;刘金合;曾维尔;;YAG激光-MAG复合焊接的熔滴过渡特性研究[A];第十六次全国焊接学术会议论文摘要集[C];2011年
5 韩赞东;都东;张人豪;;波控CO_2焊接熔滴过渡频率的智能控制[A];第九次全国焊接会议论文集(第2册)[C];1999年
6 于露;李桓;杨立军;韦辉亮;高莹;;双丝脉冲MAG焊的熔滴过渡及工艺特征[A];第十六次全国焊接学术会议论文摘要集[C];2011年
7 叶定剑;华学明;吕艳丽;石忠贤;吴毅雄;;多丝CO_2焊接熔滴过渡及熔池流动形态研究[A];第十六次全国焊接学术会议论文摘要集[C];2011年
8 王宝;武颖娜;张汉谦;;采用图象技术分析焊条熔滴过渡形态的探讨[A];第九次全国焊接会议论文集(第1册)[C];1999年
9 王宝;杨林;王勇;;基于汉诺威分析系统的焊条熔滴过渡形态的判别[A];第十一次全国焊接会议论文集(第1册)[C];2005年
相关博士学位论文 前6条
1 朱艳丽;激光-MIG双丝复合焊电弧行为及熔滴过渡研究[D];天津大学;2014年
2 张涛;熔化极气体保护焊熔滴过渡控制策略研究与应用[D];中南大学;2010年
3 葛卫清;双丝脉冲MIG焊熔滴过渡分数阶控制的研究[D];华南理工大学;2012年
4 肖s,
本文编号:2111691
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2111691.html