冲击载荷下梯度多孔金属力学行为研究
[Abstract]:Compared with continuum materials, porous materials generally have the advantages of low relative density, high specific strength, high specific surface area, light weight, sound insulation, heat insulation, good permeability and so on. At the same time, the multifunctional gradient design can make use of the design characteristics of one aspect or several aspects of the material to achieve the performance that the uniform material does not have. As a new type of engineering material which integrates physical function and structure, porous metal material can be designed as a multi-functional gradient structure with density distribution according to certain law because of its superior characteristics and open structure with high porosity. To meet the major strategic needs of multifunctional integration in various extreme environments. As a result, gradient porous materials have attracted great interest in academia and engineering. Recent studies have found that porous materials with gradient will have better energy absorption characteristics than homogeneous materials, but the conclusions of different studies are controversial. This shows that the energy absorption characteristics of gradient foams are not always superior to those of uniform foams. Therefore, the mechanical properties of gradient materials cannot be generally considered to be superior to those of homogeneous materials, depending on the actual situation, such as the degree of compression. Gradient distribution, load conditions and so on, this is one of the objectives of multifunctional gradient design. At present, the research on the impact resistance of density gradient porous metals is not systematic, and the energy distribution and energy dissipation mechanism of the gradient porous materials under the strong dynamic load are not very clear. The propagation law of stress waves in gradient porous metals needs to be further improved. Therefore, this paper carries out the following work. Firstly, the deformation mechanism, stress response and energy absorption characteristics of layer gradient circular arc honeycomb and Voronoi random honeycomb under constant velocity load are discussed. After considering the density gradient, in addition to the inertia effect, the quasi-static yield strength of different layers is also an important factor affecting the deformation modes, especially in the case of moderate and low velocity impact load, when the impact load is high enough, The inertia effect masked that the effect of yield strength was the only factor leading to the gradient honeycomb deformation. The compressive stress at the impact end is affected by the impact velocity and density gradient, while the quasi-static yield stress of the material and the deformation mode of the gradient honeycomb are the decisive factors affecting the stress level at the fixed end. Secondly, it is found that the dynamic mechanical properties of closed cell foam will be affected by strain strengthening of substrate material. In order to perfect the research, a three dimensional Voronoi model is used to study the strain strengthening effect of substrate material systematically. It is found that the strain strengthening effect converges. Thirdly, the different analytical models used in previous studies to predict the plastic response of gradient foam are mainly extended from the R-P-P-L model, that is, the strain strengthening effect in the process of foam compression is neglected. Only two key parameters of platform stress and self-locking strain (i.e. compaction strain) are considered, which is different from the actual deformation of foam. Therefore, in this paper, in order to consider the strain hardening effect, the non-rate-sensitive rigid-plastic hardening model (R-PH model) is used and extended to the continuous gradient foam, and a stress wave propagation model considering strain strengthening is obtained. At the same time, the continuous gradient Voronoi stochastic foam mesoscopic model is obtained by controlling the density distribution effectively by controlling the local cell parameters. The comparison between theoretical analysis and finite element analysis shows that the analytical model can well predict the response of gradient foam under constant velocity load, which provides an effective method for further understanding the dynamic response mechanism of gradient foam.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG113.25;TB383.4
【相似文献】
相关期刊论文 前10条
1 刘智信,李东风;多孔金属在催化中的应用[J];金属功能材料;2004年02期
2 ;多孔金属的开发和应用[J];金属功能材料;2004年06期
3 汪强兵;汤慧萍;奚正平;;多孔金属膜研究进展[J];材料导报;2004年06期
4 黄志清;;新型多孔金属的制造方法[J];上海金属.有色分册;1987年04期
5 ;多孔金属制取工艺和应用开发[J];金属功能材料;2004年05期
6 许庆彦,熊守美;多孔金属的制备工艺方法综述[J];铸造;2005年09期
7 何德坪;何思渊;尚金堂;;超轻多孔金属的进展与物理学[J];物理学进展;2006年Z1期
8 刘培生;;多孔金属格子材料(点阵材料)的制造方法[J];稀有金属材料与工程;2007年S3期
9 江帆;陈维平;李元元;胡一丹;;多孔金属载体表面描述及挂膜性能(英文)[J];广州大学学报(自然科学版);2008年02期
10 施国栋;何德坪;何思渊;丁龙;;新型塑性加工制备球形孔多孔金属及其性能[J];材料研究学报;2009年02期
相关会议论文 前10条
1 卢天健;;超轻多孔金属的性能刻画、优化设计、制备方法及其多功能化工程应用[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 周维娜;朱雁;罗峰;;一种新颖的自缠绕多孔金属-有机框架材料[A];中国化学会2013年中西部地区无机化学化工学术研讨会论文集[C];2013年
3 卢天健;;超轻多孔金属的多功能复合特性[A];中国力学学会学术大会'2005论文摘要集(上)[C];2005年
4 何德坪;何思渊;尚金堂;;超轻多孔金属的进展与物理学[A];第八届全国内耗与力学谱会议论文集[C];2006年
5 虞吉林;刘耀东;郑志军;;动载下多孔金属力学行为的速率敏感性[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(上)[C];2007年
6 赵世杰;赵桂平;;多孔金属应变率效应研究综述[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 李言祥;刘源;张华伟;;定向凝固规则多孔金属研究进展[A];2004年材料科学与工程新进展[C];2004年
8 李振华;任慧;焦清介;王晓宇;;氧化物凝胶在多孔金属铝中的沉积行为研究[A];第十七届全国高技术陶瓷学术年会摘要集[C];2012年
9 王志华;李志强;赵隆茂;杨桂通;;多孔金属及其夹芯结构的冲击力学行为[A];中国力学大会——2013论文摘要集[C];2013年
10 李拓;江俊;;点阵多孔金属夹芯板振动特性分析及优化设计[A];第八届全国动力学与控制学术会议论文集[C];2008年
相关博士学位论文 前10条
1 李志文;纳米多孔金属在有机催化反应中的应用[D];山东大学;2015年
2 黄祥;基于Micro-CT的多孔金属纤维烧结板三维形态分析及性能研究[D];华南理工大学;2013年
3 张建军;冲击载荷下梯度多孔金属力学行为研究[D];太原理工大学;2016年
4 宫凯;喷射电沉积法制备多孔金属镍机理、工艺及应用研究[D];南京航空航天大学;2010年
5 王鹏飞;多孔金属的动态力学响应及其温度相关性研究[D];中国科学技术大学;2012年
6 康锦霞;多孔金属材料应力/力增强现象的研究[D];太原理工大学;2012年
7 刘新华;孔隙结构与变形条件对藕状多孔金属变形行为和吸能特性的影响[D];北京科技大学;2015年
8 宋延泽;泡沫铝子弹撞击下多孔金属夹芯板的塑性动力响应研究[D];太原理工大学;2009年
9 侯雪;氧空位对有序多孔金属氧化物薄膜物性的影响[D];河北师范大学;2015年
10 赵丰鹏;纳米多孔金属铜冲击响应的分子动力学模拟研究[D];中国科学技术大学;2014年
相关硕士学位论文 前10条
1 梁娟;气体压力对藕状多孔银气孔形貌的影响[D];昆明理工大学;2015年
2 李洋;激光增材制造(3D打印)制备生物医用多孔金属工艺及组织性能研究[D];苏州大学;2015年
3 茅仁伟;多孔金属夹芯圆板的大挠度变形分析[D];太原理工大学;2016年
4 陈礼杰;立方体多孔金属泡沫材料力学性能分析及制备成形技术研究[D];华南理工大学;2016年
5 谢佳;烧结多孔不锈钢TiO_2过滤膜的制备与研究[D];合肥工业大学;2016年
6 瞿静;以可溶性气凝胶为模板的纳米多孔金属制备方法研究[D];西南科技大学;2016年
7 刘树成;基于Zr-MOF的不同形态介孔ZrO_2的制备及表征[D];贵州大学;2015年
8 远双阳;冲击作用下多孔金属的动力学及热力学响应[D];中北大学;2017年
9 段晓宇;结合气候的多孔金属表皮研究[D];华南理工大学;2011年
10 汪强兵;多孔金属膜制备工艺的研究[D];西安建筑科技大学;2004年
,本文编号:2119821
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2119821.html