钢桥典型构造焊接残余应力有限元分析
[Abstract]:Welding is a complex phenomenon involving heat transfer, solid and hydrodynamics, electromagnetism and material metallurgy. Welding phenomena include heat transfer during welding, melting and solidification of metals, phase transformation during cooling, welding residual stress and deformation, etc. There is a large number of welding in the whole welded steel bridge, so it is not possible to completely control and eliminate the residual stress at present, and there is still a large amount of residual stress in the welding position. The existence of residual stress will decrease the stability of the structure and will seriously affect the strength and bearing capacity of the structure. So it is necessary to know the distribution of residual stress after welding. In this paper, the finite element model of T-joints and welded integral joints of steel truss is established by using the finite element analysis software ANSYS, and the distribution of temperature field and stress field is observed. The main works are as follows: (1) the basic theory of welding residual stress and the common methods of numerical simulation are briefly introduced, and the influence of residual stress on the structure is introduced. (2) the thermophysical and mechanical parameters of materials at different temperatures are determined. And welding heat source model and so on. The APDL command is used to write the cyclic command flow to realize the loading and moving of the welding heat source, and the generation of the welding seam element is realized by the birth and death element technique. (3) the finite element model is established, and the temperature field is solved and calculated. As the heat source moves, the heat source forms a quasi-steady temperature field on the weld line. The isotherm in front of the heat source is dense and the temperature gradient is large, and the isotherm behind the heat source is sparse and the temperature gradient is small, thus proving the correctness of welding temperature field simulation. Through the indirect coupling of the temperature field and the stress field, the temperature load of the temperature field is read, and the results of the stress field are obtained. With the welding, the stress influence surface increases gradually, the equivalent stress is close to the yield stress, and the yield stress is reached after cooling. The maximum longitudinal stress of the whole node model reaches 388MPa, which exceeds the yield stress. (4) the external load is applied on the basis of the integral node model with residual stress, and the calculated results are analyzed. Under the combined action of external load and welding stress, the stress change in the near weld zone is obvious and there is a stress mutation, but the stress change is not very significant when the weld is far away from the weld zone. The external force redistributes the stress, increases the yield surface, and releases some regional stresses.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG404
【参考文献】
相关期刊论文 前10条
1 黄道业;;高强度钢T型接头焊接变形固有应变数值模拟[J];热加工工艺;2013年11期
2 赵秋;吴冲;;U肋加劲板焊接残余应力数值模拟分析[J];工程力学;2012年08期
3 胡敏英;吴志生;;基于单元生死焊接温度场应力场模拟研究[J];机械工程与自动化;2007年06期
4 刘兴龙;曲仕尧;邹增大;王新洪;;基于ANSYS的焊接过程有限元模拟[J];电焊机;2007年07期
5 万秀琴;高明宝;;焊接残余应力对压力容器疲劳裂纹扩展的影响[J];吉林化工学院学报;2007年02期
6 张国栋;周昌玉;;管道对接间断焊与连续焊的有限元分析[J];焊接学报;2006年12期
7 李鸿;任慧龙;曾骥;;基于固有应变的加筋板焊接变形分析[J];哈尔滨工程大学学报;2006年01期
8 陈家权,沈炜良,尹志新,肖顺湖;基于单元生死的焊接温度场模拟计算[J];热加工工艺;2005年07期
9 朱援祥,王勤,赵学荣,孙秦明;基于ANSYS平台的焊接残余应力模拟[J];武汉理工大学学报;2004年02期
10 汪建华,陆皓,魏良武;固有应变有限元法预测焊接变形理论及其应用[J];焊接学报;2002年06期
相关博士学位论文 前1条
1 蔡志鹏;大型结构焊接变形数值模拟的研究与应用[D];清华大学;2001年
相关硕士学位论文 前7条
1 张鹏;钢厚板焊接残余应力研究[D];武汉理工大学;2013年
2 唐明瑞;分段总组接缝间隙对横向收缩量的影响研究[D];武汉理工大学;2013年
3 华一品;T型接头焊接残余应力数值模拟及强度分析[D];大连理工大学;2009年
4 王勇;熔化焊焊接接头的温度场和应力数值模拟[D];北京交通大学;2009年
5 姚小波;钢桁架桥梁节点的焊接残余应力有限元模拟[D];武汉理工大学;2008年
6 佘昌莲;焊接结构的残余应力研究[D];武汉理工大学;2006年
7 梁晓燕;中厚板多道焊焊接过程中温度场和应力场的三维数值模拟[D];华中科技大学;2004年
,本文编号:2125987
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2125987.html