多层晶片阳极键合界面结构及力学性能研究
[Abstract]:BF glass has good heat resistance, optical properties, chemical stability and mechanical properties. In the field of MEMS device fabrication and packaging, BF glass is usually connected to semiconductor, metal and other materials in order to realize the microsensor. Packaging technology of microflow pump and other devices. Anodic bonding is the most commonly used technique to connect glass with the above mentioned materials. In this paper, the connection of Si-glass-Si-Al-glass-Si and glass-Ni at low temperature in atmosphere is realized by means of anode bonding technique and electric field inversion. The effects of process parameters on interface structure and mechanical properties are studied. It is found that: (1) by using anodic bonding process, the bonding process of Si-glass-Si (1) -glass can be realized by a single electric field inversion, and Na precipitates on the glass surface. The formation of Na depletion layer in vitreous near the junction interface has two different spatial regions, "high field intensity" and "low field intensity". Two peak currents occurred in the bonding process of Si (2) -glass interface under the influence of the first bonding interface. (2) Al-glass-Al and Al-glass-Si samples were prepared by anodic bonding technique. As Al3 diffuses to the Na depletion layer, the second interface bond current does not show two peak currents. The reverse electric field decreases the bonding rate of Al (1) -glass interface, but does not destroy the interfacial strength of Al-glass-Al interface, which is higher than that of Al-glass-Si interface, and the fracture occurs along the second bonding interface. (3) Al foil is used as the transition layer for the first time. The low temperature brazing bonding between glass and Ni is realized in the atmosphere. The typical interface structure is: 1 / glass / Al / Al\ +\ {8ZnSn\}\% Ni3Sn2 / Ni. The tensile test results show that the fracture occurs in the glass, indicating that the interface bond is good, and the interface strength is higher than the strength of the base metal.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH-39;TG454
【参考文献】
相关期刊论文 前6条
1 胡宇群;董明佳;;MEMS阳极键合界面层的力学行为研究进展[J];南京航空航天大学学报;2015年04期
2 林智鑫;王盛贵;刘琦;曾毅波;郭航;;带有Si_3N_4薄膜的玻璃-硅-玻璃三层结构的阳极键合[J];传感器与微系统;2013年08期
3 杨静;张富强;;圆片级真空封装技术在MEMS陀螺中的应用[J];微纳电子技术;2012年05期
4 刘多;张丽霞;何鹏;冯吉才;;SiO_2玻璃陶瓷与TC4钛合金的活性钎焊[J];焊接学报;2009年02期
5 罗大为;沈卓身;;可伐合金与玻璃封接工艺的优化[J];北京科技大学学报;2009年01期
6 沈伟东;吴亚明;章岳光;刘旭;顾培夫;;电子束蒸发玻璃薄膜中间层的阳极键合研究[J];真空科学与技术学报;2008年02期
相关会议论文 前1条
1 孟庆森;马秋平;刘翠荣;;Pyrex/Al多层静电键合界面力学特征分析[A];2008全国功能材料科技与产业高层论坛论文集[C];2008年
相关硕士学位论文 前7条
1 刘睿华;软钎料在玻璃表面润湿机理研究[D];哈尔滨工业大学;2014年
2 赵旭峰;基于介质阻挡放电的复合阳极键合机理和工艺设备研究[D];苏州大学;2014年
3 徐晓龙;玻璃表面润湿性及其与铜的低温连接[D];哈尔滨工业大学;2013年
4 孙小磊;超声波振动辅助钎焊玻璃工艺及机理研究[D];哈尔滨工业大学;2009年
5 卢佳;真空玻璃的阳极键合密封技术研究[D];哈尔滨工业大学;2008年
6 鲁晓莹;Pyrex玻璃与铝阳极键合界面结构及残余应力模拟分析[D];太原理工大学;2008年
7 刘洪斌;SiO_2陶瓷与30Cr3高强钢及TC4钛合金钎焊机理及工艺研究[D];哈尔滨工业大学;2007年
,本文编号:2135808
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2135808.html