Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究
[Abstract]:With the increasing pressure of resources, energy and environment, the development of high strength steel has been paid more and more attention from all over the world, and has been developed into a kind of steel with a wide range of applications. In the various strengthening mechanisms of steel materials, the grain size is very difficult to refine the grain size and the strengthening effect of fine grain when the grain size is refined to 2~3 m. It is difficult to continue to improve, the efficiency of the replacement of solid solution strengthening to improve the strength is relatively low; dislocation strengthening and phase transformation intensification, although increasing the strength obviously, have great damage to the plastic toughness of steel, and precipitation strengthening is a strengthening method of minimum plastic damage except fine crystal strengthening, which is also an important research direction of high strength steel. It is fully utilized, and the precipitation strengthening increment in the traditional high strength steel is generally below 200 MPa. Therefore, increasing the precipitation enhancement increment is the best strengthening method to improve the mechanical properties of the steel. It is the most simple and effective method to improve the increment of precipitation enhancement. Therefore, it is of great theoretical significance and industrial application value to develop a hot rolling high strength steel with a large precipitation enhancement increment with reasonable multicomponent composite microalloying and optimized thermal mechanical control technology. The Ti-V-Mo composite microalloying is used in this paper, and the optimized heat is combined. The mechanical control process, by controlling the rational precipitation of MC phase in austenite and ferrite, is expected to produce hot rolled high strength steel with large precipitation enhancement. Using transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron backscattering (EBSD) and physical and chemical phase analysis (Physics-chemical phase analysis), and other experimental means of Ti-V-MO steel The main research contents and results are as follows: the thermodynamic model of the (M1, M2, M3) X type four element composite precipitates in the iron matrix was established, and it was successfully applied in the Ti-V-Mo composite microalloyed steel. The thermodynamics, kinetics and low temperature coarsening of MC phase in Ti steel, V steel, Ti-V steel, Ti-Mo steel and Ti-V-Mo steel were in the iron matrix. The results show that the Ti-V-Mo composite microalloying reduces the potential precipitation of the MC phase in austenite without increasing the total solid solution temperature, increases the precipitation of the MC phase in the ferrite and reduces the fastest precipitation temperature of the MC in the austenite, and the MC phase in the low-temperature ferrite has a strong resistance to coarse. The Ti.V-Mo composite microalloying is the best microalloying system for the enhancement of the precipitation enhancement. The relationship between the MoC and the austenite and ferrite interface between the austenite and the ferrite is calculated, and the basis for the thermodynamic calculation of the precipitated phase containing Mo is provided. The influence of the precipitation kinetics on the C phase in the body (Ti, V, Mo) and the precipitation kinetics induced by the austenite phase transition induced precipitation on the ferrite (Ti, V, Mo) C phase. The results show that the deformation of austenite can be increased by increasing the deformation energy storage of austenite, promoting the precipitation of the Ti, V, Mo), preventing the growth of the austenite grain, and increasing the precipitation in the austenite. The maximum nucleation rate and nucleation rate precipitated in the ferrite (Ti, V, Mo) C precipitated and the nucleation rate increased, which was beneficial to obtain the nanoscale precipitates with larger precipitation density, and the precipitation enhancement increment tended to be greater. The maximum nucleation temperature of (Ti, V, Mo) C in the ferrite was estimated at 630~650, and the fastest precipitation temperature was 720 under the actual production conditions. -740 C provides theoretical guidance for obtaining fine ferrite grain and larger precipitation enhancement increment. The influence of finishing rolling temperature, cooling rate and coiling temperature on the microstructure and properties of Ti-V-Mo steel is discussed. The specific process parameters of the best mechanical properties of the high Ti-V-Mo steel under the laboratory conditions are obtained. The variation of the composition of C particles at different stages (Ti, V, Mo) was investigated. The results showed that the final rolling temperature was 800~850 C, the cooling rate was higher than 20 C, and the overall mechanical properties of high Ti-V-Mo steel were the best when the coiling temperature was 600~625 degrees C. The precipitation phase was mainly V and Ti content was low at 600 and 650 C, at 500 and 550. When coiling, the precipitated phase is mainly Ti, and the content of V is low. Through the optimized thermal mechanical control technology, the tensile strength and yield strength are 1134 MPa and 1080 MPa respectively. The post fracture elongation rate and the uniform elongation rate are 13.2% and 6.8% respectively, and the precipitation enhancement increment is up to 444~487 MPa, which breaks through the tradition. The increment limit of precipitation intensification for high strength ferrite steel is calculated and the strengthening increment of high Ti-V-Mo composite microalloyed hot rolled high strength steel at different coiling temperatures is estimated and analyzed. The influence of coiling temperature on yield strength and MC phase particles on uniform plasticity is discussed.
【学位授予单位】:昆明理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG142.1
【相似文献】
相关期刊论文 前10条
1 ;俄研究硼微合金化工艺[J];铁合金;2000年06期
2 东涛,付俊岩;试论我国钢的微合金化发展方向[J];中国冶金;2002年05期
3 ;首钢研制出新型微合金钢筋[J];炼钢;2002年03期
4 梅洪生;微合金化应用与控制评述[J];特钢技术;2003年01期
5 李钰;大卫·米尔本;;钒微合金化锻造钢[J];钢铁钒钛;2013年04期
6 马捷;低碳微合金化铸钢[J];铸造;1990年02期
7 ;铌、钒微合金紧固体钢的研究[J];钢铁研究学报;1995年01期
8 李学富;65Г微合金化提高其性能[J];冶金标准化与质量;1996年09期
9 董寅生,苏华钦,梅建平,刘传博;中碳铸钢微合金化的研究[J];东南大学学报;1997年05期
10 胡心彬,李麟,吴晓春;铌微合金化在特殊钢中的应用[J];金属热处理;2003年06期
相关会议论文 前10条
1 裴陈新;王立涛;裴英豪;董梅;施立发;;钛、铌微合金化对磁极钢性能影响研究[A];2013钒钛高强钢开发与应用技术交流会论文集[C];2013年
2 马志英;胡志军;杨弋涛;;低碳微合金化铸钢的研制与性能测试[A];第十二届全国铸造年会暨2011中国铸造活动周论文集[C];2011年
3 王洪利;刘宏玉;王瑞敏;周鹏;黄_g;;帘线钢微合金化后的组织与性能研究[A];2011金属制品行业技术信息交流会论文集[C];2011年
4 肖乃成;魏国强;唐田华;;HRB335Nb铌微合金化钢筋的开发[A];2007年度泛珠三角十一省(区)炼钢连铸年会论文专辑[C];2007年
5 李剑华;;铌微合金化HRB400带肋钢筋的生产实践[A];2009年河北省冶金学会炼钢—连铸技术与学术年会论文集[C];2009年
6 周玉丽;王全礼;鲁丽燕;邸全康;李艳平;刘健;张崴;;非微合金化HRB400钢筋生产技术研究[A];2009全国建筑钢筋生产、设计与应用技术交流研讨会会议文集[C];2009年
7 龚庆华;吴保桥;;BS55C H型钢V—N微合金化的试验研究[A];中国金属学会第一届青年学术年会论文集[C];2002年
8 陈伟;赵宇;张卫强;庾郁梅;李金柱;施哲;;采用富氮钒微合金化生产大规格HRB500钢筋[A];2013钒钛高强钢开发与应用技术交流会论文集[C];2013年
9 陈学文;毛新平;李烈军;钟志永;庄汉洲;许传芬;;Ti微合金化高强耐候钢的成分设计研究[A];2013广东材料发展论坛——战略性新兴产业发展与新材料科技创新研讨会论文摘要集[C];2013年
10 张小雪;刘兰俊;李永红;;微合金化对高碳当量灰铁组织的影响[A];第十三届21省(市、区)4市铸造会议暨第七届安徽省铸造技术大会论文集[C];2012年
相关重要报纸文章 前10条
1 王文军 东涛;铌微合金化工程用钢[N];世界金属导报;2014年
2 王庆;钒氮微合金化前景广阔[N];中国冶金报;2002年
3 本报记者 王庆;钒氮微合金化新途径[N];中国冶金报;2004年
4 周一平 董雅君;大力发展钒微合金化先进钢铁材料实现铁道车辆用钢升级换代[N];世界金属导报;2004年
5 ;铌微合金化技术发展历程及其在长型材中应用[N];世界金属导报;2005年
6 戴维·米尔本 李钰;钒微合金化工艺在生产高强度抗震钢筋方面的冶金优势[N];世界金属导报;2010年
7 本报记者 夏杰生;发展微合金化 圆钢铁强国梦[N];中国冶金报;2001年
8 杨雄飞;现代高强度铌微合金化结构钢[N];世界金属导报;2013年
9 ;铌微合金化汽车板[N];世界金属导报;2006年
10 东海 付俊岩;微合金化——现代钢组织细化和性能控制的核心[N];中国冶金报;2004年
相关博士学位论文 前2条
1 张可;Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究[D];昆明理工大学;2016年
2 余式昌;微合金化奥氏体气阀钢的组织和性能研究[D];东南大学;2006年
相关硕士学位论文 前10条
1 李韶雨;昆钢微合金铁粉的超细化制备[D];昆明理工大学;2015年
2 邢清源;5356铝合金电磁连铸、净化和微合金化工艺研究[D];大连理工大学;2015年
3 余爱武;Ti、Zr复合微合金化对纯铝组织和性能的影响[D];南昌航空大学;2014年
4 吕昌略;微合金化及热轧工艺对铝硅镁基型材组织和性能的影响[D];东南大学;2015年
5 付博;钒氮微合金化77B、82B钢组织和性能的研究[D];昆明理工大学;2009年
6 魏胜辉;微合金化对铸钢组织和力学性能的影响[D];河北科技大学;2009年
7 邹航;微合金化高强度钢研究[D];武汉科技大学;2012年
8 吴毅;V/Ti微合金化对中碳钢组织结构及机械性能影响机制研究[D];哈尔滨工业大学;2010年
9 徐斌;高强度抗震钢筋V-Cr复合微合金化的实验研究[D];武汉科技大学;2011年
10 康殿才;微合金化HRB400生产工艺的优化研究[D];青岛理工大学;2013年
,本文编号:2153668
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2153668.html