当前位置:主页 > 科技论文 > 铸造论文 >

Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究

发布时间:2018-08-04 21:23
【摘要】:随着现代工业和科学技术的不断发展,提高钢铁材料的强度成为了备受关注的课题。析出强化是提高钢铁材料强度的一种重要的方式。Fe-Cu钢时效过程中析出了纳米级的富Cu相,具有明显的析出强化效果。当Fe-Cu钢中复合添加Ni、Al、Mn元素时,Fe-Cu-Ni-Al-Mn钢中含有多元强化相,析出强化更明显,研究复合析出强化,对发展高强度钢有重要意义。本文采用维氏显微硬度(VHN)、光学显微镜(OM)、高分辨透射电镜(HRTEM)和原子探针层析技术(APT)等测试手段,结合析出动力学,分析了Fe-1.5 wt.%Cu、Fe-1.5 wt.%Cu-2 wt.%Mn、Fe-1.5 wt.%Cu-3 wt.%Ni-1wt.%Al和Fe-0.95 wt.%Cu-3.13 wt.%Ni-1.09 wt.%Al-1.87 wt.%Mn四种钢中强化相的析出过程,研究了钢中富Cu相和Ni(Al,Mn)相共存时,影响强度的规律和机理。主要研究结果和结论如下:(1)Mn影响钢中富Cu相析出的规律和机理。等温时效过程中,Fe-Cu-Mn钢比Fe-Cu钢先达到硬度峰值,过时效阶段Fe-Cu-Mn钢的硬度下降速率大于Fe-Cu钢,表明添加Mn元素加速了析出强化的进程;APT结果显示,时效初期,Fe-Cu-Mn钢比Fe-Cu钢中富Cu相的数量密度高,时效后期,Fe-Cu-Mn钢比Fe-Cu钢中富Cu相的尺寸大,数量密度低,表明Mn元素的添加加快了富Cu相的形核、长大和粗化速度。Mn降低了富Cu相与基体之间界面能,增加了形核的化学成分驱动力,因此提高了富Cu相的形核速率;Mn元素的添加改变了Cu的化学位,加速了Cu的扩散速率,从而加速了富Cu相的长大和粗化。随着时效时间的延长,富Cu相会由bcc结构向fcc结构转变,此转变过程中会产生缺陷,大量的Mn原子偏聚于缺陷处,富CuMn相会发生调幅分解,最终形成了片状富Cu相和片状富Mn相的交替排列的层状结构。(2)NiAl相影响钢中富Cu相析出的规律和机理。等温时效过程中,Fe-Cu-Ni-Al钢峰值硬度比Fe-Cu钢高,硬度峰值持续时间长,Ni、Al的加入增强了析出强化效果。相同的时效时间,Fe-Cu-Ni-Al钢中析出相的尺寸均小于Fe-Cu钢,数量密度均大于Fe-Cu钢。Ni、Al的加入提高了时效初期富Cu相形核率,富Cu相与α-Fe基体的界面为NiAl相的形核提供了质点和能量,形成了富Cu相在核心,NiAl相包裹在其外侧的核壳结构,这种结构使得析出相比较稳定,不易长大和粗化,从而保持良好的析出强化效果。随着时效时间的进一步延长,富Cu相和NiAl相发生了分离,显微硬度下降。(3)时效过程中,Fe-Cu-Ni-Al-Mn钢中首先析出了球形的富NiAlMnCu团簇,随着时效时间的延长,富NiAlMnCu团簇分解为富Cu相和Ni(Al,Mn)相,而且这两个析出相相互依存。Fe-Cu-Ni-Al-Mn钢时效过程中析出相的演化过程为:富NiAlMnCu团簇?Ni(Al,Mn)相和富Cu相。不论是Mn的加入,还是Ni,Al的加入都加速了富Cu相的形核,只是,Mn的加入促进了富Cu相的长大和粗化,Ni,Al的加入在一定程度上抑制了富Cu相的长大和粗化,因此四种钢形核速度依次为:Fe-Cu-Ni-Al-MnFe-Cu-Ni-AlFe-Cu-MnFe-Cu;长大速度依次为:Fe-Cu-MnFe-CuFe-Cu-Ni-AlFe-Cu-Ni-Al-Mn;粗化速度为:Fe-Cu-MnFe-CuFe-Cu-Ni-Al-MnFe-Cu-Ni-Al。(4)钢中两相区富Cu相和Ni(Al,Mn)相的析出特征。Fe-Cu-Ni-Al-Mn钢淬火后不可避免存在残余奥氏体,500℃时效1 h后,用APT观测到残余奥氏体中没有析出相,马氏体和马氏体/残余奥氏体界面处均有析出相的析出,马氏体中靠近界面处有一层析出贫化区。界面处析出相的等效半径和间距均大于马氏体中的析出相,界面处富Cu相和NiAl相中Cu,Ni和Al的含量均大于马氏体中的富Cu相和NiAl相,而且界面处富Cu相和NiAl相的分离趋势要大于马氏体,这是因为界面处存在大量缺陷,促进了析出相的长大,使得界面处和马氏体中的析出相处于长大的不同阶段。
[Abstract]:With the continuous development of modern industry and science and technology, improving the strength of steel materials has become a subject of great concern. The precipitation strengthening is an important way to improve the strength of steel materials..Fe-Cu steel has been precipitated in the process of aging of Cu and has obvious precipitation strengthening effect. When Fe-Cu steel is added, Ni, Al, Mn elements are added together Fe-Cu-Ni-Al-Mn steel contains multiple intensification phases and precipitation strengthening is more obvious. It is of great significance for developing high strength steel. In this paper, Vivtorinox microhardness (VHN), optical microscope (OM), high resolution transmission electron microscopy (HRTEM) and atomic probe chromatography (APT) are used to analyze Fe-1.5. The precipitation process of wt.%Cu, Fe-1.5 wt.%Cu-2 wt.%Mn, Fe-1.5 wt.%Cu-3 wt.%Ni-1wt.%Al and Fe-0.95 wt.%Cu-3.13 wt.%Ni-1.09 wt.%Al-1.87 wt.%Mn four kinds of steels is studied. The law and mechanism of the influence of the coexistence of the rich phase in the steel are studied. The main results and conclusions are as follows: (1) the precipitation of the rich phase in the steel is affected. In the process of isothermal aging, Fe-Cu-Mn steel reaches the peak of hardness first than that of Fe-Cu steel. The decrease rate of Fe-Cu-Mn steel in over aging stage is greater than that of Fe-Cu steel, which indicates that adding Mn element accelerates the process of precipitation strengthening. APT results show that the number density of Fe-Cu-Mn steel is higher than that of Cu phase in Fe-Cu steel at the early stage of aging, and the later period of aging, Fe-Cu-Mn, Fe-Cu-Mn. The size of Cu phase in steel is larger than that of Fe-Cu steel, and the number density is low. It shows that the addition of Mn elements accelerates the nucleation of the rich Cu phase. The growth and coarsening speed.Mn reduces the interfacial energy between the rich Cu phase and the matrix, increases the chemical composition driving force of the nucleation, thus increases the nucleation rate of the rich Cu phase, and the addition of Mn elements changes the chemical bit of Cu and accelerates the addition of Mn elements. The diffusion rate of Cu accelerates the growth and coarsening of the rich Cu phase. With the prolongation of the aging time, the rich Cu phase will change from the bcc structure to the fcc structure. The transition process will produce defects, a large number of Mn atoms are segregated at the defects, and the rich CuMn phase occurs in amplitude decomposition, and eventually forms the alternating layers of lamellar rich Cu and flaky Mn phase. (2) the law and mechanism of NiAl phase affecting the precipitation of rich Cu phase in steel. During isothermal aging, the peak hardness of Fe-Cu-Ni-Al steel is higher than that of Fe-Cu steel, the peak hardness duration is longer, the addition of Ni and Al strengthens the precipitation strengthening effect. The same aging time, the size of the precipitated phase in Fe-Cu-Ni-Al steel is less than that of Fe-Cu steel, and the quantity density is greater than Fe-Cu. The addition of.Ni and Al increases the nucleation rate of the rich Cu phase in the early aging period. The interface between the rich Cu phase and the matrix of the alpha -Fe provides the particle and energy for the nucleation of the NiAl phase, forming the core shell structure of the rich Cu phase in the core and the NiAl phase in its outer side. This structure makes the precipitate relatively stable, not easy to grow and coarsening, thus maintaining good precipitation enhancement effect. With the further prolongation of the aging time, the rich Cu phase and NiAl phase were separated and the microhardness decreased. (3) in the aging process, the rich NiAlMnCu clusters were first precipitated in Fe-Cu-Ni-Al-Mn steel. With the prolongation of the aging time, the rich NiAlMnCu clusters were decomposed into rich Cu phase and Ni (Al, Mn) phase, and the two precipitates were interdependent on.Fe-Cu-Ni-. The evolution of the precipitated phase in the aging process of Al-Mn steel is: the rich NiAlMnCu cluster? Ni (Al, Mn) Xiang Hefu Cu phase. Whether the addition of Mn, Ni, and Al accelerates the nucleation of the rich Cu phase, but the addition of Mn promotes the growth and coarsening of the rich Cu phase, and therefore, to a certain extent, inhibits the growth and coarsening of rich Cu. Therefore, four kinds of additives have been suppressed to some extent. The velocity of steel nucleation is Fe-Cu-Ni-Al-MnFe-Cu-Ni-AlFe-Cu-MnFe-Cu, and the growth rate is Fe-Cu-MnFe-CuFe-Cu-Ni-AlFe-Cu-Ni-Al-Mn in turn, and the coarsening speed is: the precipitating characteristic of Cu phase and Ni (Al, Mn) phase in Fe-Cu-MnFe-CuFe-Cu-Ni-Al-MnFe-Cu-Ni-Al. (4) steel will inevitably have retained austenite after the quenching of.Fe-Cu-Ni-Al-Mn steel. 50 After 1 h aging at 0 C, there are no precipitates in the retained austenite with APT. The precipitation of martensite and martensite / retained austenite is precipitated, and there is a layer of precipitation and dilution in martensite near the interface. The equivalent radius and spacing of the precipitated phase at the interface are all larger than the precipitates in martensite, and the interface is rich in Cu and Cu, N in the NiAl phase. The content of I and Al is greater than that of the rich Cu and NiAl phases in martensite, and the separation trend of Cu and NiAl phases at the interface is greater than that of martensite. This is due to the existence of a large number of defects at the interface, which promotes the growth of the precipitate phase and makes the precipitation in the interface and martensite get along with the different stages of growth.
【学位授予单位】:上海大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG142.1

【相似文献】

相关期刊论文 前10条

1 李锡武;熊柏青;张永安;华成;李志辉;朱宝宏;刘红伟;;新型Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr合金单级时效行为研究[J];稀有金属材料与工程;2009年09期

2 王学敏,周桂峰,杨善武,贺信莱;Cu-Nb-Ni-Cr-Mo钢的析出硬化[J];北京科技大学学报;2000年01期

3 ;铁、钨、钼、钴型表面时效硬化合金[J];电镀与涂饰;2000年01期

4 王均,沈保罗,孙志平,邹红,邱绍宇;17-4PH的时效动力学研究[J];四川冶金;2004年01期

5 苏娟华,董企铭,刘平,李贺军,康布熙;Cu-Cr-Zr-Mg合金时效组织与性能[J];材料科学与工艺;2004年03期

6 尹桂全,杨才福,吕忆农,任高强;含铜钢的时效硬化[J];钢铁研究学报;2004年04期

7 李志辉,熊柏青,张永安,朱宝宏,刘红伟,王锋;单级时效对7B04预拉伸厚板组织和性能的影响[J];中国有色金属学报;2005年11期

8 郭凤莲;刘宗昌;任慧平;;含1.55%铜高纯钢的时效行为[J];内蒙古科技大学学报;2007年01期

9 高琪妹;于晓丹;熊晓航;;预时效对6111铝合金时效硬化的影响[J];热加工工艺;2008年22期

10 李荣德;马欢欢;李润霞;曲迎东;;Al-4.0Cu合金时效初期原子分布的计算机模拟[J];沈阳工业大学学报;2008年04期

相关会议论文 前10条

1 熊建芳;;钢丝处理过程中的时效作用[A];全国金属制品信息网第22届年会论文集[C];2010年

2 李德辉;李志成;刘路;高国忠;徐永波;邹壮辉;;时效对Mg-RE合金性能与结构的影响[A];2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集[C];2002年

3 曾婵;刘丽;孙平;王小祥;;贵金属齿科铸造合金时效后结构和性能研究[A];浙江生物医学工程学会第九届年会论文汇编[C];2011年

4 O祝桂合;小野寺龙太;;低碳钢的屈服与时效现象的新探索[A];中国金属学会2003中国钢铁年会论文集(4)[C];2003年

5 郭岩;王博涵;侯淑芳;周荣灿;;改进型617镍基合金时效析出相[A];2013年中国电机工程学会年会论文集[C];2013年

6 王兴权;王欣平;廖赞;孙秀霞;;超高强度CuNiMnFe合金的时效特性[A];中国有色金属学会第十二届材料科学与合金加工学术年会论文集[C];2007年

7 韩小磊;熊柏青;张永安;李志辉;朱宝宏;王锋;刘红伟;;单级时效制度对7150铝合金组织和性能的影响[A];全国第十四届轻合金加工学术交流会论文集[C];2009年

8 李晓玲;王秀芳;孙东立;武高辉;;SiC_p/2024Al复合材料的时效硬化行为[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年

9 杨才福;张永权;;Cu时效硬化钢中Cu的析出[A];中国特殊钢年会2005论文集[C];2005年

10 栾佰峰;陈国钦;武高辉;;AlN_p/LY12复合材料的时效硬化行为[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年

相关博士学位论文 前10条

1 王晓姣;Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究[D];上海大学;2016年

2 张延志;时效对U-5.8wt.%Nb合金结构和力学性能的影响研究[D];中国工程物理研究院;2015年

3 顾伟;大断面7050高强铝合金挤压及热处理过程组织与性能研究[D];北京科技大学;2016年

4 孟凡岩;连续热压机马氏体时效不锈钢带的时效、激光焊接和氧化行为研究[D];吉林大学;2016年

5 聂鑫;铸态及快速凝固镁锡和镁钆锌合金中析出相的透射电子显微学研究[D];武汉大学;2015年

6 苏睿明;喷射成形7075合金RRA处理工艺优化与合金时效机理研究[D];沈阳工业大学;2015年

7 高珍;Al-Cu-Li-Mg合金时效中纳米析出相及演变规律研究[D];湖南大学;2015年

8 刘春辉;汽车用高性能铝合金强化析出相的演变及调控[D];湖南大学;2015年

9 周浩;大塑性变形Mg-Gd-Y系合金组织结构演变和力学性能研究[D];上海交通大学;2015年

10 赵倩;Al-Mg-Si-Zr-XEr合金组织性能及时效析出强化的研究[D];沈阳工业大学;2016年

相关硕士学位论文 前10条

1 薛丞丞;Ti含量对LF2气阀合金组织与性能的影响[D];昆明理工大学;2015年

2 熊竟成;Mg-Gd-Y系合金时效析出行为研究[D];北京有色金属研究总院;2015年

3 吉婉;时效对热挤压态Mg-Zn-Ca/Mg-Zn-Ca-Nd合金力学及腐蚀性能的影响[D];长安大学;2015年

4 石翔宇;热处理对Al-12.7Si-0.7Mg合金韧性和裂纹扩展的影响[D];东北大学;2014年

5 陶诗文;承压件用铸造铝硅系合金组织与性能研究[D];东南大学;2015年

6 盛首文;飞机壁板时效成形过程壁板结构的参数化分析[D];上海工程技术大学;2016年

7 袁明华;弹性元件用铍青铜热变形行为及热处理研究[D];南昌航空大学;2016年

8 黄官伟;静电场对7075铝合金时效成形性能的影响研究[D];南昌航空大学;2016年

9 邱跃武;Al-Er高强耐热导电铝合金的性能研究[D];郑州大学;2016年

10 夏泓玮;固溶工艺和断续时效对7150铝合金组织和力学性能的影响[D];哈尔滨工业大学;2016年



本文编号:2165197

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2165197.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户56090***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com