Ti-TiN-Zr-ZrN抗冲蚀多层膜的制备、结构及性能
[Abstract]:In the fields of aviation, aerospace, energy, machinery and metallurgy, there are many materials (components) caused by erosion and wear of solid particles. Especially with the development of high and new technology industries such as aeronautics and Astronautics, traditional structural materials are difficult to meet the requirement of abrasive erosion. The protective coating is one of the effective ways to solve this problem. There has been a report on the application of the anti erosion hard film to the aero engine compressor components in foreign countries. However, our country is late in this field, and the research is not systematic, especially in the lack of theoretical guidance on the anti erosion behavior and failure mechanism of the hard film; it has not been completely clarified. The effect of the Chu film layer on the fatigue property of the matrix material. In this paper, the Ti-TiN-Zr-ZrN soft and hard alternating anti erosion multilayer film was prepared by cathode arc ion plating technology. The microstructure, residual stress and main performance evaluation of the multilayer film were studied systematically. The following results were obtained: 1) under the condition of the thickness of multilayer film, the number of periods increased. As a period of thinner, the surface smoothness of the multilayer films, the hardness, the hardness, the binding force and the abrasive resistance are obviously improved, while the residual stress is decreasing. With the decrease of the RTi/TiN:RZr/ZrN, the residual stress is increasing, the bonding force also decreases, and the hardness is slightly increased, and the abrasive resistance is scoured. The performance changes are not obvious; with the increase of metal and metal nitride (RMe:RMeN) ratio (RMe:RMeN), the hardness of the multilayer film decreases, and the binding force and the performance change of the abrasive scour are not obvious. The optimization process of the Ti-TiN-Zr-ZrN multilayer film in this experiment is about (200~300) NM, the modulation ratio of the gold and metal nitride is RMe:RMe N=1:6, the titanium and zirconium base modulation With the increase of the thickness of multilayer film, the residual stress is stable at a certain level, and the bonding force is on the rise due to the increase of the support strength. When the thickness of the film reaches a certain value (the test is 7.54 m), the hardness is basically stable above 30GPa.2) Ti-TiN-Zr-ZrN multi layer film has good anti abrasive erosion protection for the matrix material. With the increase of thickness, the ability of multilayer film to resist sand erosion is enhanced, and the protective effect of low erosion angle (30 degree) is obviously better than that of high erosion angle (90 degrees). The erosion mechanism of sand particles of.TC11 titanium alloy belongs to the erosion mechanism of plastic material, that is, the main effect is the cutting or plowing effect of sand under the low erosion angle, while the material is due to the high erosion angle. The plastic deformation of the sand particles is caused by the plastic deformation and causes the hardening. Finally, the mechanism of the erosion and wear of the.Ti-TiN-Zr-ZrN soft and hard alternate multilayer film appears in the stress concentration zone or the drop off pit, and expands along the longitudinal direction. When the crack extends to the metal soft layer, the stress is buffered and absorbed, thus the direction of the crack growth is extended. When the change is transversely extended along the interlayer interface, when the cracks are connected, some films are separated from the multilayer film and cause wear. The author establishes the mechanism model of the erosion failure mechanism of the soft and hard alternating multilayer film.3). After 50 cycles of heat shock at 300 and 500 degrees C, the film remains intact. Cracks, blisters and exfoliation only occur surface oxidation and produce color deepening and particle shedding. It shows that the multilayer film can effectively protect the matrix material. After 10 cycles of heat shock at 600 C, the surface of the specimen appears to be delamination on the surface due to the oxidation of the powder and the crack expansion, and the film has begun to fail at.600 C for 50 cycles. After that, the Ti-TiN-Zr-ZrN multilayer film with a thickness of about 10 m has completely failed, and the Ti-TiN-Zr-ZrN multilayer film with a thickness of about 20 m is still not completely invalid. Therefore, the use temperature of the Ti-TiN-Zr-ZrN multilayer film with thickness of 10 mu m is less than 500 degrees C.4) and the fatigue limit of TC11 material is increased from 440MPa to 470MPa, which increases the stress of 6.8%.. The fatigue life relationship (S-N curve) shows that when the stress level is lower than 570MPa, the multilayer film improves the fatigue life of the TC11 substrate, but when the stress level is higher than the 570MPa, the multilayer film reduces the fatigue life of the TC11 substrate. For the TC11 substrate, the crack source usually sprouts on the surface defects, and the number of crack sources increases with the increase of the stress level. The fracture form is a mixture of ductile and cleavage fracture.TC11 after plating multilayer film, the film covers the surface defects of the substrate. When the stress level is less than 570MPa, the sample has only a single crack source. At the same time, the multilayer film with soft and hard alternating modulation structure cushions the crack growth, thus improving the fatigue life of the specimen, after the stress level exceeds the 570MPa, The sample has multiple crack sources, the multilayer film is badly damaged and the fatigue life is reduced. The fracture form is also the ductile and cleavage mixed type fracture.5. Under the same technological conditions, the surface roughness of the matrix material has a great influence on the properties of the multilayer film: reducing the surface roughness of the matrix, improving the film / base resultant force, anti scour ability and corrosion resistance. The surface roughness of the target workpiece to be treated must be controlled at Ra 0.40 micron in order to obtain good comprehensive application performance of the film.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG174.4
【相似文献】
相关期刊论文 前10条
1 ;第12届全国残余应力学术交流会在武汉召开[J];理化检验(物理分册);2003年01期
2 陈鹏;振动消除宏观残余应力的机理研究[J];电焊机;2005年01期
3 ;第15届全国残余应力学术交流会第1轮通知[J];电镀与环保;2009年03期
4 ;第15届全国残余应力学术交流会于10月在重庆召开[J];中国表面工程;2009年03期
5 周喜来;蒋士杰;刘瑞光;;石化在役设备的焊缝残余应力的消除与控制[J];中国新技术新产品;2012年02期
6 ;第17届全国残余应力学术会议暨国际残余应力研讨会(第1轮通知)[J];中国机械工程;2013年08期
7 ;2013年全国残余应力学术会议暨国际残余应力研讨会将在上海召开[J];中国表面工程;2013年02期
8 高路;圆筒残余应力的测定法[J];化工设备设计;1979年04期
9 李广铎;苏建新;王维容;刘柏梁;;鞲鞴涨圈残余应力的测试与分析[J];机车车辆工艺;1982年05期
10 曾春华;;残余应力对疲劳的影响[J];机械强度;1984年03期
相关会议论文 前10条
1 陈超;潘春旭;;残余应力测量技术的现状和发展[A];湖北省第九届热处理年会论文集[C];2004年
2 游敏;郑小玲;;对接接头横向残余应力调控技术研究[A];中西南十省区(市)焊接学会联合会第九届年会论文集[C];2006年
3 张小勇;楚建新;叶军;陆艳杰;刘鑫;;铜应力缓解层对陶瓷-金属连接残余应力的影响[A];电子陶瓷,陶瓷,金属封接与真空开头管用管壳的技术进步专辑[C];2006年
4 郑杰;张显程;;高温环境诱导的表面强化处理残余应力的释放[A];中国力学大会——2013论文摘要集[C];2013年
5 朱丽娜;徐滨士;王海斗;王成彪;;相关技术在残余应力检测中的应用[A];第八届全国表面工程学术会议暨第三届青年表面工程学术论坛论文集(二)[C];2010年
6 潘勤学;栗勇;徐春广;肖定国;杨向臣;伍懿;;超声法焊缝残余应力检测技术研究[A];2011年机械电子学学术会议论文集[C];2011年
7 任小平;刘怡;;一种无损测试焊接板件残余应力的方法[A];第九届全国结构工程学术会议论文集第Ⅲ卷[C];2000年
8 游敏;郑小玲;;对接接头横向残余应力调控技术研究[A];湖北省暨武汉焊接学会成立二十五周年2005年焊接学术年会文集[C];2005年
9 宇慧平;韩长录;;超高强钢电阻点焊残余应力研究[A];北京力学会第20届学术年会论文集[C];2014年
10 郑永男;左翼;周冬梅;范平;袁大庆;朱升云;;正电子湮没方法研究材料中残余应力[A];第四届全国反应堆物理与核材料学术研讨会论文集[C];2009年
相关重要报纸文章 前6条
1 实习记者 王恒;控制残余应力——寻找加工变形的解决之道[N];中国航空报;2014年
2 陶萍萍;中建钢构用新技术消除钢板墙残余应力[N];现代物流报;2013年
3 ;残余应力与加工变形控制技术[N];中国航空报;2013年
4 ;抗疲劳制造工艺优化方案[N];中国航空报;2013年
5 ;残余应力与变形控制整体解决方案在航空铝合金锻件中的应用[N];中国航空报;2013年
6 蔺军 谢艳花;央视新楼钢构制作特点与加工工艺[N];建筑时报;2007年
相关博士学位论文 前10条
1 姜杰凤;高锁螺栓干涉安装及其对螺接结构力学性能的影响[D];浙江大学;2014年
2 宋文涛;残余应力超声无损检测与调控技术研究[D];北京理工大学;2016年
3 张峥;飞机弱刚性铝合金结构件的残余应力和加工变形控制技术研究[D];南京航空航天大学;2016年
4 李峰;基于定位强化感应加热技术的磨削表面残余应力控制研究[D];清华大学;2015年
5 王军强;大型壳体结构焊接变形及残余应力调控方法研究[D];北京交通大学;2016年
6 董亚波;2A14铝合金厚板残余应力表征及消减工艺研究[D];哈尔滨工业大学;2016年
7 林松盛;Ti-TiN-Zr-ZrN抗冲蚀多层膜的制备、结构及性能[D];华南理工大学;2016年
8 刘海涛;精密薄壁回转体零件加工残余应力及变形的研究[D];哈尔滨工业大学;2010年
9 曹江;2A02高强度铝合金热加工残余应力研究及其数值模拟[D];西南石油大学;2014年
10 朱丽娜;基于纳米压痕技术的涂层残余应力研究[D];中国地质大学(北京);2013年
相关硕士学位论文 前10条
1 冯诚诚;Ti-TiN-Zr-ZrN多层膜残余应力及疲劳性能的研究[D];华南理工大学;2015年
2 任喜强;热轧H700×300型钢残余应力的控制[D];河北联合大学;2014年
3 宋金潮;非调质钢棒材轧后冷却过程残余应力数值模拟及实验研究[D];燕山大学;2015年
4 翟紫阳;超高强钢厚板结构件MIG焊温度场应力场数值模拟及试验研究[D];南京理工大学;2015年
5 康玲;正交异性钢桥面板纵、横肋焊接残余应力数值模拟[D];西南交通大学;2015年
6 孙彦文;Q345B钢等离子-MAG复合焊工艺研究[D];西南交通大学;2015年
7 王晓臣;面向卫星零件工艺设计的拓扑优化技术研究[D];北华航天工业学院;2015年
8 刘何亮;U肋与顶板连接焊缝残余应力的三维数值模拟[D];西南交通大学;2015年
9 周鹏;微晶玻璃磨削表面的残余应力研究[D];苏州大学;2015年
10 张爱爱;基于SYSWELD的7A52铝合金双丝MIG焊残余应力分析[D];内蒙古工业大学;2015年
,本文编号:2170120
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2170120.html