H340LAD_Z高强度钢板成形极限图的构建
[Abstract]:In recent years, with the rapid development of sheet metal finite element simulation technology, finite element analysis technology has entered the stage of practical production and has been widely used in automobile production in more and more countries, but due to the division of elements, the choice of iterative parameters. The modeling of sheet metal, initial value, boundary condition and the setting of the criterion have certain influence on the accuracy and result of simulation. Therefore, the research on the simulation accuracy of finite element software is carried out. It has important theoretical significance and application value to promote sheet metal stamping forming technology and the development of automobile industry in China. In this paper, the forming limit test and numerical simulation of H340LAD_Z niobium microalloyed steel are carried out. On this basis, single factor simulation test analysis and orthogonal simulation test optimization analysis of material properties parameter hardening index (n), yield function index parameter (m) and thickness anisotropy index (r) are carried out. In order to reveal the influence of material parameters on the forming limit diagram and obtain the optimized material parameters, the accuracy of the results is verified by uniaxial tensile experiments. The main research content is: 1, using XJTUDIC three-dimensional digital speckle strain measurement and analysis system to test the forming limit of 9 specimens with different widths designed by GB, taking points from the last picture taken before rupture, and solving the limit strain. Finally, the maximum and minimum principal strain were obtained, and the forming limit diagram of H340LAD_Z niobium microalloyed steel was obtained by Matlab fitting. The forming limit test was simulated by Dynaform software. Two criteria are synthesized: the maximum load criterion is used in the left tension and compression zone, and the strain path criterion is used in the right tension and tension zone. The limit strain data of sheet metal. 3 can be obtained accurately. The influence of yield function exponent parameter m, hardening index n and thickness anisotropy index of sheet metal on forming limit diagram is studied by single factor method. The forming limit curve increases with the increase of the hardening index n, but decreases with the increase of the thickness anisotropy index r and the yield function exponent m. Taking three material parameters as experimental factors, orthogonal experimental design was carried out to study the significance of the influence of each factor level on sheet metal forming limit curve. The results show that the order of influencing factors is as follows: hardening exponent n yield function parameter m thickness anisotropy index r, the optimal material parameter combination is hardening index n 0. 18, yield function exponent parameter m 0. 4, thick anisotropy index r = 0. 9 4. The optimum material parameters are adopted before optimization using Dynaform, respectively. The ultimate strain diagram and ultimate load of the specimen were obtained by numerical simulation of the parameters of the material properties after uniaxial tensile test. Compared with the corresponding results obtained from the uniaxial tensile test, the optimized material parameters are more close to the experimental results. Before uniaxial tensile test and optimization, the relative error of limit strain is 6.2% and 2.5%, and the relative error of limit displacement is 15% and 6.3 respectively. It is concluded that the simulation accuracy of Dynaform software is improved by the optimized set of material performance parameters.
【学位授予单位】:天津职业技术师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG386
【相似文献】
相关期刊论文 前10条
1 卢国清,邱晓刚;成形极限图的测试、应用和可信度分析[J];理化检验(物理分册);2002年11期
2 卢国清,邱晓刚,骆中云,陈文龙;成形极限图的测试、应用和可信度分析[J];钢铁钒钛;2002年03期
3 龙卫国,金波,汤池;厚向异性薄板成形极限图的计算分析[J];南华大学学报(理工版);2001年03期
4 邱晓刚,卢国清,陈文龙,唐晖;坐标网分析技术与成形极限图的应用[J];理化检验(物理分册);2002年07期
5 陈炜;郭伟刚;侯波;张家骅;;基于厚度梯度准则的薄板成形极限图建立方法[J];中国机械工程;2007年18期
6 凤佩华;金属薄板成形极限图试验方法[J];汽车技术;1986年01期
7 常志华;于连仲;;成形极限图的制作方法[J];汽车工艺;1987年04期
8 连建设;周大军;隋忠祥;薛祥义;刘玉文;谭善锟;王晓玲;余克钦;黄春杰;;汽车薄钢板塑性成形极限图的试验研究[J];汽车工艺;1989年06期
9 江健;孔泰;杨松;;获得成形极限图的双板实验方法[J];锻压技术;1989年02期
10 陈光南;沈还;胡世光;;成形极限图左半部薄板失稳行为与极限应变——失稳过程实验研究[J];钢铁研究;1991年05期
相关会议论文 前4条
1 卢国清;邱晓刚;;成形极限图的测试、应用和可信度分析[A];全国材料理化测试与产品质量控制学术研讨会论文专辑(物理测试部分)[C];2002年
2 陈明和;王东;高霖;左敦稳;王珉;;基于有限元仿真方法建立成形极限图[A];中国科协第二届优秀博士生学术年会材料科学技术分会论文集[C];2003年
3 方健;魏毅静;王承忠;;薄板成形极限图(FLD)的多项式拟合分析[A];全国材料理化测试与产品质量控制学术研讨会论文专辑(物理测试部分)[C];2002年
4 薛玉雷;陈明和;;基于Dynaform的应力成形极限图的应用研究[A];第三届华东六省一市塑性工程学术年会论文集[C];2005年
相关硕士学位论文 前7条
1 田丽雯;H340LAD_Z高强度钢板成形极限图的构建[D];天津职业技术师范大学;2016年
2 刘毅;AZ31镁合金板材热态下成形极限图的试验研究与数值模拟[D];太原理工大学;2012年
3 冯华云;高强钢激光拼焊板成形极限图的试验与预测研究[D];江苏大学;2008年
4 闫辰侃;镁铝层合板的热轧成形及热成形极限图研究[D];太原理工大学;2014年
5 黄莉莉;镁铝复合板的制备及热态成形极限图的实验研究[D];太原理工大学;2013年
6 王承鑫;钛合金及Ti_2AlNb金属间化合物板材热成形极限图[D];哈尔滨工业大学;2014年
7 龙文宝;镀镍钢带的应力成形极限图研究与应用[D];湘潭大学;2013年
,本文编号:2176045
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2176045.html