钢中氧化物与溶质原子的相互作用及其对铁素体形成的影响
[Abstract]:Nonmetallic inclusions have long been considered as harmful impurities in steel. However, solute atoms such as Mn, B, C in steel interact with oxide inclusions such as Ti2O3, ZrO2 and Al2O3, forming various defective oxides and some defective oxides through different ways such as substitution, gap and chemical reaction. The formation energies of various defective oxides are obtained by first-principles calculation. The mechanism of interaction between solute atoms and oxides is revealed. The formation mechanism of ferrite and its influence on strength and toughness are discussed. The interaction of three solute atoms Mn, B and C in steel with three oxides Ti2O3, ZrO2 and Al2O3 was studied. The effect of ferrite formation was observed by metallographic microscope, and the content of elements around oxides was quantitatively analyzed by electron probe microanalysis (EPMA). The properties of energy, magnetism and density of states of the related substances are calculated by the principle of property, so as to achieve the purpose of combining experiment with theoretical calculation and verifying each other. The main conclusions are as follows: (1) First-principles calculations show that Ti2O3 is a cationic vacancy oxide, Zr O2 is an anionic vacancy oxide, and Al2O3 is not easy to form a vacancy oxide. The results show that Mn ions can enter the vacancies of Ti2O3 and ZrO2 as doping atoms, and the Mn-depleted regions are formed around the two oxides. The structure analysis shows that the radius of Mn ions and Zr ions is similar, which makes Mn ions easily doped into ZrO2, and the crystal structure is more stable. As manganese is an austenitic enlarged element, the existence of Mn-poor zone can reduce the resistance of ferrite formation and promote the formation of ferrite. (3) The first-principles calculation results show that the formation energy of boron and oxide doping is positive. Boron does not occur when the boron segregated at the austenitic grain boundary interacts with oxide particles (Ti2O3, ZrO2 and Al2O3). Boron is an austenitic stabilizing element. The presence of boron inhibits the formation of ferrite and the formation of boron oxide will not inhibit the formation of ferrite. (4) Carbon content in austenite is higher than that in ferrite. First-principles calculations show that for steel containing only carbon, when carbon interacts with oxide particles (Ti2O3, ZrO2 and Al2O3), carbon does not enter into oxide particles, but reacts with excess oxygen in cationic vacancy Ti2O3 to form carbon. (5) The stability, electrical and magnetic properties of Ti, Zr, Al oxides (MxOy) and MnMx-1Oy doped oxides (MnMx-1Oy) were analyzed by first-principles calculation data. The results show that Ti2O3 has more cations. The formation energy of vacancy and Ti_3MnO_6 is the lowest. The density of States indicates that Ti_2O_3 has certain conductivity, while ZrO_2 and Al_2O_3 are insulators. The chemical environment of Mn in Mn-doped oxides changes, resulting in the asymmetry of the density of states of the doped oxides. Therefore, the doped oxides have magnetic moments. (6) Based on the above theoretical study, the Zr-Ti deoxidization method was used to develop high strength. Welded structural steels. The results show that the formation of fine dispersed Zr-Ti composite oxides in steels provides nucleation particles for the precipitation of MnS and causes spheroidization of MnS. The microstructure and mechanical properties of the steels are uniform, fine and dispersed. Compared with traditional Al deoxidation, the strength, ductility and low temperature toughness are improved, especially the mechanical properties. The results show that the first-principles calculation has a good theoretical guidance for the development of high-performance steel materials, especially for the formulation of composition systems. Based on the above studies, the structure of solute atoms and oxides can be calculated and optimized from the perspective of quantum mechanics. The interaction mechanism of two solute atoms with oxides in steel is proposed: solute atoms doping to form solute depleted zone and solute atoms reacting with oxides to reduce solute atoms content. The interaction with oxides and their effects on phase transition provide research ideas, means and methods.
【学位授予单位】:武汉科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG142.1
【相似文献】
相关期刊论文 前10条
1 ;攀钢在国际上率先实现氧化物夹杂快速分析[J];酒钢科技;2006年01期
2 徐华良;;铸坯氧化物夹杂探讨[J];江苏冶金;2006年04期
3 史美伦;段贵生;;氧化物冶金技术应用及进展[J];河南冶金;2010年05期
4 陈名浩,沈汝美;差热抽取测定钢中氧化物夹杂的新方法[J];钢铁研究学报;1998年04期
5 李新明,郑少波,郑庆,朱立新;钢的氧化物冶金技术[J];上海金属;2005年05期
6 薛正良;齐江华;金焱;周国凡;;超低氧条件下钢液脱氧与氧化物夹杂尺寸[J];武汉科技大学学报(自然科学版);2006年06期
7 汪国才;包燕平;吴宗双;;脱氧工艺对车轮钢氧化物夹杂控制的影响[J];炼钢;2010年01期
8 王光迪;于春芬;;电炉轴承钢中的氧化物夹杂[J];特殊钢;1983年06期
9 徐金城,亚·罗·帕英;保温时间对钢中氧化物夹杂的数量及尺寸的影响[J];甘肃工业大学学报;1988年01期
10 沈汝美;钢中氧化物夹杂分析的误差来源及结果的可靠性[J];分析化学;1992年05期
相关会议论文 前5条
1 杨健;祝凯;王睿之;王国栋;沈建国;;宝钢利用强脱氧剂的氧化物冶金工艺开发[A];第七届(2009)中国钢铁年会论文集(上)[C];2009年
2 于春梅;缪新德;杜建峰;石超民;成国光;;轴承钢不变形D类氧化物夹杂的形成与控制工艺[A];2007中国钢铁年会论文集[C];2007年
3 朱立光;;氧化物冶金技术及发展[A];2012河北省炼钢连铸生产技术与学术交流会论文集[C];2012年
4 郭俊波;王丽君;刘延强;胡晓军;张国华;周国治;;高铁弹条钢氧化物夹杂形成的热力学分析[A];2012年全国冶金物理化学学术会议专辑(上册)[C];2012年
5 张博;王福明;李长荣;;弹簧钢中氧化物夹杂塑性化控制的热力学分析[A];2010年全国冶金物理化学学术会议专辑(上册)[C];2010年
相关重要报纸文章 前5条
1 张小军;攀钢率先实现钢中氧化物夹杂快速分析[N];世界金属导报;2008年
2 肖英龙;钢中氧化物最新分析技术的开发[N];世界金属导报;2003年
3 老唐 本平;钢中氧化物夹杂分析方法跻身国内外技术前沿[N];世界金属导报;2006年
4 老唐 本平 记者 周军 通讯员 龙海;攀钢钢研院成功开发检测仪器新功能[N];中国冶金报;2006年
5 唐复平 李镇 王晓峰 费鹏 林洋 张越 辛国强;反应诱发微小异相净化钢水技术开发[N];世界金属导报;2011年
相关博士学位论文 前2条
1 马江华;Ti-Mg/Ti-Zr脱氧体系氧化物冶金机理研究[D];东北大学;2013年
2 李钰;钢中氧化物与溶质原子的相互作用及其对铁素体形成的影响[D];武汉科技大学;2016年
,本文编号:2176980
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2176980.html