C、Mn配分对TRIP效应钢组织与性能影响的研究
[Abstract]:Advanced High Strength Steel-AHSS with low development cost and good performance can improve the lightweight, reduce exhaust emissions and reduce environmental pollution while ensuring the safety and comfort of automobiles. Quenching and Partitioning-QP process can produce a martensite+residual Austenite. The carbon partition process in QP process can improve the stability of austenite and keep it to room temperature (retained austenite), while retained austenite can transform into martensite under stress. Absorbing a large amount of impact energy can significantly improve the safety of automobiles. At the same time, martensite provides ultra-high strength for QP steel. When replacing low strength automotive materials with QP steel, the thickness of automotive parts can be reduced and the lightweight degree of automobiles can be effectively improved. The microstructure of the test steel was observed and analyzed by optical microscope (OM) and scanning electron microscope (SEM) with the same parameters of C and Mn partitioning process. The content and distribution of C and Mn in retained austenite were measured by X-ray energy dispersive spectrometer (EDS). The mechanical properties of the test steel were tested by universal tensile machine and X-ray irradiation. The content of retained austenite was measured by X-ray diffraction (XRD). The effect of tensile stress on the mechanical stability of retained austenite in TRIP steel was studied. The following results were obtained: (1) Carbon diffused to the interface of a'/gamma when martensite transformation was completed after salt bath quenching, resulting in the unequal chemical potential of Fe atoms at the interface of a'/gamma on the martensite side and on the austenite side, which is the migration of a'/gamma interface. As the driving force is supplied, the migration of Fe atoms on the martensite side is lower than that on the austenite side. During the subsequent partitioning process, the migration of Fe atoms to the austenite side is determined by the partition temperature. (3) The content of C and Mn in retained austenite far exceeds the original content of the two elements in the test steel, which proves that the Mn matching in this test is proved. At the same time, through the analysis of EDS scanning results, the composition design of low carbon medium manganese high strength steel containing copper which is more conducive to the composition of Mn in QP process is proposed. (4) The change trend of Strength-plasticity product is related to the tensile strength and the ratio of increase or decrease of elongation after fracture, and the elongation after fracture is more likely to affect the Strength-plasticity product. (5) Ferromagnetic phenomena appeared on the fracture surface of the test steel after tensile fracture. Because the test steel contains alpha-Fe (i.e. ferrite and martensite), and alpha-Fe shows ferromagnetic characteristics below Curie temperature. During tensile process, ferrite and martensite magnetic domains are not destroyed in order to resist tensile stress, and these magnetic domains begin to be destroyed. Arranged in the same direction, two groups of elementary magnets with different polarities are formed at both ends of the fracture surface, which resist the material being destroyed by mutual attraction. (6) The transformation rate and mechanical stability of retained austenite and the stress-induced dislocation proliferation, plugging and dislocation absorption of retained austenite (Dislocation Absorptio) The n by Retained Austenite-DARA effect is related to the transformation rate of retained austenite and the mechanical stability of retained austenite are obviously divided into three stages with the increase of strain. The stress plays a different role in the different stages of the transformation from retained austenite to martensite.
【学位授予单位】:山东建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG142.1
【相似文献】
相关期刊论文 前10条
1 ;Effect of Microstructure in TRIP Steel on Its Tensile Behavior at High Strain Rate[J];Journal of Iron and Steel Research(International);2003年01期
2 周玉,郭英奎,李冬波,段小明;Effects of load mode on mechanical properties of ZrO_2(2Y)/TRIP steel composites[J];Transactions of Nonferrous Metals Society of China;2003年05期
3 ;Effects of Holding Temperature for Austempering on Mechanical Properties of Si-Mn TRIP Steel[J];Journal of Iron and Steel Research(International);2004年06期
4 ;Effect of Silicon and Manganese on Mechanical Properties of Low-Carbon Plain TRIP Steel[J];Journal of Iron and Steel Research(International);2005年03期
5 ;ON THE TENSILE MECHANICAL PROPERTY OF Si-Mn TRIP STEELS AT HIGH STRAIN RATE[J];Acta Metallurgica Sinica(English Edition);2002年03期
6 王利,金蕾,夏启,徐祖耀;冷轧TRIP钢的特性及应用[J];汽车工艺与材料;2004年06期
7 ;Effects of Austempering after Hot Deformation on the Mechanical Properties of Hot Rolled Si-Mn TRIP Steel Sheets[J];材料热处理学报;2004年05期
8 REGER Mihaly,VERO Balazs,CSEPELI Zsolt;Modeling of Intel-critical Heat Treatment of DP and TRIP Steels[J];材料热处理学报;2004年05期
9 ;Effect of Silicon Content on Thermodynamics of Austenite Decomposition in C-Si-Mn TRIP Steels[J];Journal of Iron and Steel Research(International);2006年03期
10 姚贵升;;塑性变形诱导相变钢TRIP钢的性能和应用[J];汽车工艺与材料;2006年09期
相关会议论文 前10条
1 徐庆新;王光学;张玉伦;王运涛;;TRIP并行软件的开发与应用[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 龙彩霞;伍翠兰;王双宝;陈江华;;形变量对TRIP钢微观结构的影响[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年
3 李霞;陈立红;王亚芬;;化学成分和连退工艺对冷轧TRIP590钢组织和性能的影响[A];第5届中国金属学会青年学术年会论文集[C];2010年
4 李麟;B.C.De Cooman;P.Wollants;胡心彬;何燕霖;朱晓东;;铝和硅对含磷TRIP钢力学性能的影响[A];中国金属学会2003中国钢铁年会论文集(4)[C];2003年
5 王利;金蕾;夏启;徐祖耀;;宝钢汽车用冷轧TRIP钢板的开发和应用[A];中国金属学会2003中国钢铁年会论文集(4)[C];2003年
6 Akihiko Nagasaka;Koh-ichi Sugimoto;Yoichi Mukai;Yuichi Kubota;;EFFECTS OF YAG LASER CUTTING AND POST HEAT TREATMENT ON STRETCH-FLANGEABILITY OF 0.1%-0.4%C TRIP STEELS[A];复合材料表征与应用的新进展[C];2006年
7 郭金宇;刘仁东;孙建伦;王科强;严玲;王旭;林利;;含铌TRIP钢的组织与力学性能研究[A];第七届(2009)中国钢铁年会大会论文集(中)[C];2009年
8 陈宇;王立辉;李长一;;新型铝系TRIP钢的组织和性能分析[A];2007中国钢铁年会论文集[C];2007年
9 严玲;刘仁东;唐荻;杨梅梅;;低碳-硅-锰系TRIP钢的组织转变与断裂机制研究[A];2007中国钢铁年会论文集[C];2007年
10 王勇围;;TRIP钢中奥氏体形态对性能的影响[A];2012年全国轧钢生产技术会论文集(上)[C];2012年
相关重要报纸文章 前10条
1 记者 阮海儿;宝钢国内独家开发成功冷轧TRIP钢[N];中国冶金报;2004年
2 李光瀛;冷轧TRIP钢研发在钢研院取得重要进展[N];中国冶金报;2006年
3 ;高性能低硅含磷TRIP钢的开发[N];世界金属导报;2012年
4 ;试验温度对TRIP合金钢力学行为的影响[N];世界金属导报;2002年
5 廖建国;TRIP型无碳贝氏体钢板的成形性[N];世界金属导报;2012年
6 Pasi Pekka Suikkanen Antti-Jussi Ristola 李亚霏 译;芬兰进行TRIP超高强钢组织结构分析[N];中国冶金报;2013年
7 戎咏华;铌微合金化先进高强度TRIP和Q-P-T钢的研究[N];世界金属导报;2011年
8 徐锟 刘国权;铌微合金化对高AI冷轧TRIP钢组织与性能的影响[N];世界金属导报;2010年
9 ;Nb微合金化TRIP钢热处理条件、组织和性能关系[N];世界金属导报;2002年
10 高宏适;高韧、超高强TRIP型马氏体钢板的开发[N];世界金属导报;2014年
相关博士学位论文 前10条
1 王超;高强度TRIP钢组织性能表征及基于微观组织的有限元模拟[D];东北大学;2014年
2 刘仁东;新型高强度和超高强度相变诱发塑性钢研制[D];东北大学;2013年
3 郭志凯;高锰TRIP钢的组织控制与力学行为研究[D];北京科技大学;2016年
4 冯庆晓;热轧微合金化TRIP钢组织控制与力学性能研究[D];北京科技大学;2016年
5 王立辉;含稀土TRIP/TWIP钢的微观结构和变形行为研究[D];北京科技大学;2017年
6 单体坤;TRIP钢板成形性能和回弹特性研究[D];上海交通大学;2008年
7 何忠平;应变速率对不同强度级别TRIP钢力学行为影响的研究[D];上海大学;2012年
8 张维娜;高锰TRIP钢组织性能演变机理及薄带成型方法研究[D];东北大学;2011年
9 张晓兰;TRIP6在胰腺癌进展中的机制研究[D];第二军医大学;2014年
10 胡志刚;考虑预应变和烘烤影响的TRIP钢疲劳性能实验及寿命预测研究[D];上海交通大学;2014年
相关硕士学位论文 前10条
1 段小广;Fe-Mn-Al-Si系TRIP/TWIP钢相转变及相平衡研究[D];东北大学;2013年
2 闫强军;高铝低硅TRIP钢组织与性能的研究[D];东北大学;2013年
3 张一凡;TRIP800激光焊缝在冷轧中的断裂研究[D];辽宁科技大学;2015年
4 陈龙;ApoE及TRIP4基因多态性与阿尔茨海默病的相关性研究[D];安徽医科大学;2016年
5 王云w,
本文编号:2186664
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2186664.html