稀土耐热镁合金微观结构对性能的影响研究
[Abstract]:Magnesium and rare earth resources are abundant in our country, so the research and development of heat-resistant magnesium alloys containing rare earth have obvious advantages. Low-cost heat-resistant magnesium alloys for automobiles will be the key to the development of magnesium industry in the 21st century. The effects of rare earth elements and RE-rich mixed rare earth elements on the microstructure, thermal stability, mechanical properties and corrosion properties of Mg-Al based die casting and casting alloys were studied. The microstructure, mechanical properties and second phase strengthening mechanism of extruded Mg-12Ymm-4Zn (Ymm is Yttrium-rich rare earth mixture) alloy were studied. Mg-4Al-4RE alloy (AE44) was prepared by die casting, in which RE is La, Ce, Pr, Nd mixed rare earth (La: Ce: Pr: Nd = 23:55:6:16, wt.) The results show that the die casting Mg-4Al-4RE alloy has good flowing formability, no obvious defects, uniform microstructure and good die casting performance; the grain size is about 10 micron, and the strengthening phases are Al11RE3 and Al2RE, needle-like/layer. Al11RE3 was mainly distributed around the grain boundary in the form of dense arrangement. The contents of Al11RE3 and A12RE were 5.73% and 0.36% respectively. The Al 11RE3 phase in the alloy was unstable at high temperature. When the alloy was heated at 400 C for 5000 hours, the Al RE intermetallic space was determined. Al-RE intermetallics are more loosely distributed in the alloys and no longer distribute along grain boundaries. Many Al-RE intermetallics are transformed into A12RE phase under test conditions (heating at 400 C for 5000 hours). Quantitative calculation shows that after heating at 400 C for 5000 hours, Al-RE intermetallics are more loosely distributed. Al11RE3 and Al2RE contents are 4.46% and 0.96% respectively. The alloy has good tensile properties in the temperature range from room temperature to 200%. The tensile strength is 252 MPa, the yield strength is 146 MPa, and the elongation is 11.4%. The tensile strength is 116 MPa, the yield strength is 102 MPa, and the elongation is 25.1%. For die-cast AE44 alloy, heating at 400 ~1000 is small. The corrosion behavior of three alloys heated at 400 C for 5000 hours shows that as-cast alloys have high corrosion resistance, which is mainly attributed to the large number of lamellar/acicular Al11RE3 phases distributed along the grain boundaries of the alloys as corrosion barriers. Mg-xAl-yLa (x=4,8; y=2,5,8) alloy was prepared by gravity casting method. The microstructure, mechanical properties and corrosion resistance of the alloy were studied. AlLa45 alloy was mainly composed of alpha-Mg and Al11La3 phases. The properties and strong corrosion resistance of Mg-4Al-xPr (x=2,5) alloys are mainly attributed to the presence of a large number of stable strengthening phases, Al 11La 3, which accumulate at grain boundaries and strengthen grain boundaries. The unstable phase Mg17Al12 in the alloy is completely inhibited. With the increase of Pr content, the amount of Al 11Pr 3 and Al 2Pr increases obviously. Al 11Pr 3 is a temperature-sensitive reinforcement phase. The acicular Al 11Pr 3 phase transforms into granular Al 2Pr phase when heated at 400 C for 5000 hours. The fine grain strengthening and the grain boundary strengthening and solid solution strengthening produced by the aggregation of a large number of second phases at grain boundaries are the main reasons for the good tensile properties of the alloy. AE42 and AE4 5 alloys are mainly composed of a-Mg, a large number of Al11RE3 phases and a small amount of Al2RE phases. The lamellar/acicular Al11RE3 phases are distributed in clusters on the grain boundaries. After 1000 hours and 5000 hours of heating treatment at 400 C, the Al11RE3 phase decomposes and partially decomposes into Al2RE phase, which proves that the Al11RE3 phase is heated for a long time at high temperature. The results show that the AE45 alloy has the best mechanical properties at room temperature and high temperature. A large number of lamellar/acicular Al11RE3 phases are distributed in the grain boundary region. The Al11RE3 phase is approximately parallel to the lamellar state, which makes the alloy have better comprehensive strength and plasticity. The tensile strength and yield strength of the extruded Mg-12Ymm-4Zn alloy are similar to those at room temperature, 314MPa and 231MPa at 300 C, 338MPa and 278MPa at room temperature, respectively. The excellent mechanical properties of the extruded Mg-12Ymm-4Zn alloy at high temperatures are mainly due to the formation of Long-period Stacking ordered phases and nano-spacing with high volume fraction. The effect of stacking faults.
【学位授予单位】:哈尔滨工程大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG146.22
【相似文献】
相关期刊论文 前10条
1 王祝堂;耐热镁合金[J];轻合金加工技术;2000年03期
2 郭旭涛,李培杰,曾大本;稀土在耐热镁合金中的应用[J];稀土;2002年02期
3 梁维中 ,吉泽升 ,左锋 ,洪艳 ,刘洪汇 ,李军 ,刘洪德;耐热镁合金的研究现状及发展趋势[J];特种铸造及有色合金;2003年02期
4 王小强;李全安;张兴渊;;我国耐热镁合金的研究进展[J];上海有色金属;2007年02期
5 谢建昌;李全安;李建弘;张兴渊;;耐热镁合金及其开发思路[J];铸造技术;2008年01期
6 张春香;王利国;吴立鸿;陈培磊;陈海军;关绍康;;主要耐热镁合金系的研究进展[J];材料科学与工程学报;2008年04期
7 赵惠;李平仓;黄张洪;王虎年;;耐热镁合金综述[J];轻合金加工技术;2010年04期
8 田树科;郭学锋;崔红保;黄丹;王英;;耐热镁合金的研究进展[J];铸造技术;2011年08期
9 郭旭涛,李培杰,刘树勋,曾大本;稀土耐热镁合金发展现状及展望[J];铸造;2002年02期
10 闫蕴琪,张廷杰,邓炬,周廉;耐热镁合金的研究现状与发展方向[J];稀有金属材料与工程;2004年06期
相关会议论文 前7条
1 曲迎东;邱克强;马广辉;李荣德;;耐热镁合金的研究现状与趋势[A];2012年全国地方机械工程学会学术年会论文集(《机械》2012增刊)[C];2012年
2 李建弘;李全安;谢建昌;王小强;张兴渊;;稀土耐热镁合金的开发与应用[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年
3 黄文刚;刘波;刘建才;李晓青;;耐热镁合金研究进展及在汽车上的应用[A];2012重庆汽车工程学会年会论文集[C];2012年
4 黄文刚;刘波;刘建才;李晓青;;耐热镁合金研究进展及在汽车上的应用[A];西南汽车信息:2012年下半年合刊[C];2012年
5 张磊;龚明;彭良明;;Mg-Gd-Y-Sn-Zr高强耐热镁合金的微观结构与力学性能[A];2012年海峡两岸破坏科学/材料试验学术会议论文摘要集[C];2012年
6 任文亮;李全安;石雅静;张兴渊;;稀土Nd在耐热镁合金中的应用[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
7 艾延龄;刘江文;罗承萍;;含Ca、Si镁合金的力学性能分析[A];2004年中国材料研讨会论文摘要集[C];2004年
相关博士学位论文 前4条
1 焦玉凤;稀土耐热镁合金微观结构对性能的影响研究[D];哈尔滨工程大学;2016年
2 文丽华;固相再生ZM6耐热镁合金组织和性能研究[D];哈尔滨理工大学;2009年
3 付三玲;Mg-Gd(-Y-Sm-Zr)耐热镁合金组织和性能研究[D];西安理工大学;2016年
4 薛山;含Nd耐热镁合金显微组织和性能的研究[D];东南大学;2006年
相关硕士学位论文 前10条
1 王金伟;Mg-Al-Si-Sr耐热镁合金成分设计与组织性能研究[D];山东建筑大学;2015年
2 田治坤;大型高强耐热镁合金构件的热处理工艺研究[D];中北大学;2016年
3 张薇;稀土元素对耐热镁合金组织和性能的影响[D];西安建筑科技大学;2016年
4 迟大钊;稀土及锆、钙对耐热镁合金组织及性能的影响研究[D];哈尔滨理工大学;2004年
5 孙岩;发动机缸体用耐热镁合金的研究[D];太原理工大学;2013年
6 汪洋;含稀土耐热镁合金挤压工艺及其组织与性能研究[D];华东理工大学;2013年
7 耿宁宁;几种耐热镁合金的组织及性能[D];沈阳工业大学;2013年
8 徐道芬;耐热镁合金压蠕变行为的研究[D];西华大学;2008年
9 张青辉;耐热镁合金的组织与高温性能[D];四川大学;2007年
10 杨刚;钙对AE系耐热镁合金凝固行为的影响[D];西华大学;2013年
,本文编号:2202491
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2202491.html