当前位置:主页 > 科技论文 > 铸造论文 >

稀土铈Ce改性A7N01铝合金耐腐蚀性能研究

发布时间:2018-08-25 16:35
【摘要】:本课题以A7N01铝合金的标准成分为基础,通过自行设计合金元素的成分范围以及梯度掺杂微量Ce元素的试验方法设计5种不同稀土含量的A7N01-T5铝合金。对各合金的铸态和挤压棒材进行显微组织观察、晶粒尺寸比较、析出相成分分析以及各项基本力学性能分析。通过剥落腐蚀、开路电位、动电位极化以及交流阻抗等试验研究稀土铝合金无应力条件下的局部腐蚀行为。并采用电化学噪声技术监测稀土铝合金C环应力腐蚀的开裂过程。试验结果表明,Ce元素能明显细化A7N01铝合金的晶粒大小,影响第二相的分布和形态,使铸态晶粒尺寸由183.7μm细化至54.2μm,由于Ce元素在铝合金中的固溶度小,偏聚在晶界处,形成一种含Ce的脆性结晶相,在轧制过程中被挤碎后沿着晶界零散分布,因其尺寸较大,易使晶格扭曲从而形成大量位错,阻碍晶界的运动,加大该处的过冷度,提升了晶粒的形核速率,同时在已成形的晶粒表面生成一层活性膜,阻碍晶粒的继续长大,进而达到细化晶粒的效果。但当Ce元素加入过量时,使其首先在合金中形成大量的金属间化合物,降低了 Ce元素在晶界处的偏聚量,减弱了这种成分过冷的作用,合金组织又开始逐渐粗化。而且该稀土结晶相是硬脆相,在塑性变形过程中作为裂纹源,引发裂纹生长,严重的降低合金的韧性以及延伸率。所以未添加Ce元素的C1合金的基本力学性能均为最好,而添加0.3%Ce元素的C4合金,因细晶强化和第二相强化作用使其抗拉强度、屈服强度以及硬度仅次于C1合金,但同时因为晶内析出相以及含Ce稀土相对位错的钉扎作用,会使位错在这些相周围塞积严重,使晶内存在大量的位错对和位错缠结,应力集中较大,降低了其韧塑性,使C4合金的延伸率以及冲击韧性都达到最小值。在A7N01铝合金中,η相的电位比铝基体的电位低,作为阳极发生溶解,腐蚀严重。适量Ce元素的添加,减少了晶界上η相的数量,晶界析出相变得更加粗化和断续分布,不易形成连续的粗大链状物,使合金的PFZ窄化,有效地阻止了腐蚀活性通道,降低了腐蚀的敏感性。且Ce元素极易与腐蚀液中的O2-发生化学反应,生成致密的含Ce钝化层,降低了 Cl-对铝合金表面的点蚀破坏,能有效的阻止合金的进一步腐蚀。同时Ce元素与H有较大的亲和力,能大量的吸附以及溶解H,减轻H原子在缺陷处聚积,从而降低了 SCC敏感性。而当Ce元素添加过量时,形成的含Ce金属间化合物缺失了 Ce元素的保护性。适量Ce元素的添加能使剥蚀的等级从EC+级提高到PC级,开路电位从-0.9227V提高到-0.9003V,极化曲线腐蚀速率从0.940mm/a降低到0.235mm/a,点蚀电阻从4394Ω·cm2提高到16260Ω.cm2,有效的提高了稀土铝合金无应力条件下的耐腐蚀性能。电化学噪声电位信号能准确的表征试样表面点蚀的发生、钝化膜的修复以及裂纹的萌生和扩展过程。时域谱分析表明C1、C5合金在NaCl-HCl溶液中浸泡62小时后开始出现规律的、等时间间距的噪声峰,且随着时间的继续延长,这种规律的阶跃变得更加明显和规律,而PDS曲线上也开始对应在高频部分由闪烁噪声转变为白噪声,表明裂纹开始生长并扩展,而C2、C3、C4合金未出现这种阶跃和白噪声,同时结合每个时间段的体视形貌验证了试验结果的可靠性。A7N01稀土铝合金的应力腐蚀开裂是阳极溶解为主,氢脆加速的共同结果。
[Abstract]:Based on the standard composition of A7N01 aluminium alloy, five kinds of A7N01-T5 aluminium alloys with different rare earth contents were designed by means of self-designed composition range of alloy elements and gradient doping method of trace Ce. The microstructure of as-cast and extruded bars were observed, the grain size was compared, and the precipitated phase composition was analyzed. The local corrosion behavior of RE-Al alloy under stress-free condition was studied by stripping corrosion, open circuit potential, potentiodynamic polarization and AC impedance. The cracking process of RE-Al alloy C-ring stress corrosion was monitored by electrochemical noise technique. The results show that Ce can refine A7N01 aluminum obviously. The grain size of the alloy affects the distribution and morphology of the second phase and refines the grain size from 183.7 micron to 54.2 micron. Because of the small solid solubility of Ce element in the aluminum alloy, it is segregated at the grain boundary and forms a brittle crystalline phase containing Ce. It is dispersed along the grain boundary after being crushed during rolling because of its large size and easy to distort the lattice. As a result, a large number of dislocations are formed, the movement of grain boundaries is hindered, the undercooling of the grain is increased, the nucleation rate of the grain is increased, and a layer of active film is formed on the surface of the formed grain, which hinders the continuous growth of the grain and refines the grain. Compounds reduce the segregation of Ce at grain boundaries, weaken the supercooling effect of this component, and the alloy microstructure begins to coarsen gradually. Moreover, the rare earth crystalline phase is hard and brittle, which acts as a crack source during plastic deformation, causing crack growth and seriously reducing the toughness and elongation of the alloy. The basic mechanical properties of gold are all the best. The tensile strength, yield strength and hardness of C4 alloy with 0.3% Ce addition are only inferior to those of C1 alloy because of fine grain strengthening and second phase strengthening, but the dislocation around these phases will be heavily plugged due to the precipitation and pinning effect of rare earth containing Ce. In A7N01 aluminum alloy, the potential of_phase is lower than that of the aluminum matrix, which is used as anode to dissolve and corrode seriously. The boundary precipitation phase transformation is coarser and more discontinuous, and it is difficult to form continuous coarse chains, which narrows the PFZ of the alloy, effectively prevents the corrosive active channel and reduces the corrosion sensitivity. At the same time, Ce has a greater affinity with H, can adsorb and dissolve H, reduce the accumulation of H atoms in the defect, and thus reduce the SCC sensitivity. The corrosion resistance of RE-Al alloy under stress-free condition is improved effectively by raising the grade of denudation from EC + to PC, increasing the open-circuit potential from -0.9227V to -0.9003V, decreasing the corrosion rate of polarization curve from 0.940mm/a to 0.235mm/a, and increasing the pitting resistance from 4394_.cm2 to 16260.cm2. Time domain spectroscopic analysis showed that after soaking in NaCl-HCl solution for 62 hours, the noise peaks of C1 and C5 alloys appeared regularly with equal time intervals, and the step of the regularity became more obvious and regular with the time prolonging, while the PDS curves were observed. At the same time, the experimental results were verified by the stereo morphology of each time period. The stress corrosion cracking of A7N01 rare earth aluminum alloy was mainly caused by anodic dissolution, while hydrogen was mainly caused by hydrogen. The common result of brittle acceleration.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG146.21

【相似文献】

相关期刊论文 前10条

1 关跃强,黄光孙;铝合金镀银经验谈[J];材料保护;2002年12期

2 刘延辉;李宝成;;铝和铝合金的特点及铝合金的强化[J];黑龙江科技信息;2007年04期

3 王汉林;姚层林;;浅谈铝合金表面处理技术[J];建材与装饰(上旬刊);2008年06期

4 刘红军;牛金来;;影响铝合金铬化膜质量的因素[J];涂装与电镀;2009年01期

5 胡敏英;时君伟;高聪敏;;铝合金表面防腐处理技术研究[J];铝加工;2010年02期

6 宋成朴,范爱龄,韦永德;用化学法对铝合金表面扩渗稀土元素的初步探讨[J];哈尔滨工业大学学报;1985年S4期

7 王素琴;宋国松;张全生;许兴利;;铝合金上电镀新工艺[J];材料保护;1993年01期

8 左尚志,李荻;国内外铝合金剥蚀研究的现状[J];材料保护;1994年12期

9 阎国平;铝合金表面化学氧化的应用[J];材料保护;1997年05期

10 何慧华;如何识别铝合金制品的优劣[J];标准计量与质量;1999年04期

相关会议论文 前10条

1 陈松祺;;铝合金表面处理“特种工艺”简介[A];2005年上海市电镀与表面精饰学术年会论文集[C];2005年

2 李凌杰;欧孝通;陈德贤;张元;雷惊雷;张胜涛;;铝合金表面硅基防护膜的制备及表征[A];2008年全国腐蚀电化学及测试方法学术交流会论文摘要集[C];2008年

3 闫秀;;铝合金表面处理中的清洁生产技术[A];首届泛珠三角先进制造技术论坛暨第八届粤港机电工程技术与应用研讨会论文专辑[C];2004年

4 黄桂桥;;铝合金在青岛海域的腐蚀行为[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年

5 彭成允;孙智富;张春艳;陈康;赵玮霖;;铝合金表面含氟自润滑层成分分布与组织形貌[A];海峡两岸第二届工程材料研讨会论文集[C];2004年

6 郭丽;丁培道;蒋斌;;6061铝合金加工技术在国内的研究进展[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年

7 万善宏;张广安;王立平;薛群基;;铝合金表面沉积类金刚石复合薄膜的摩擦学性能[A];TFC’09全国薄膜技术学术研讨会论文摘要集[C];2009年

8 白基成;郭永丰;张海龙;刘晋春;;铝合金表面微弧放电陶瓷化改性新技术——原理、应用和国内外研究现状与动向[A];2005年中国机械工程学会年会论文集[C];2005年

9 白基成;郭永丰;张海龙;赵家齐;刘晋春;;铝合金表面陶瓷化技术的原理及在电加工中的应用[A];制造业数字化技术——2006中国电子制造技术论坛论文集[C];2006年

10 白基成;郭永丰;张海龙;刘晋春;;铝合金表面微弧放电陶瓷化改性新技术——原理、应用和国内外研究现状与动向[A];2005年中国机械工程学会年会第11届全国特种加工学术会议专辑[C];2005年

相关重要报纸文章 前1条

1 林风;日开发新型材料 营造靓丽车型[N];中国有色金属报;2006年

相关博士学位论文 前8条

1 王珊珊;时效处理及表面磨削对7xxx系铝合金局部腐蚀行为的影响[D];哈尔滨工业大学;2015年

2 申志康;铝合金回填式搅拌摩擦点焊显微组织及力学性能研究[D];天津大学;2014年

3 黄若双;铝合金及铜腐蚀的示差图像研究[D];厦门大学;2006年

4 李玉兰;离子束处理铝合金的腐蚀和疲劳性能[D];重庆大学;2003年

5 丁红燕;铝合金和钛合金在雨水/海水环境下的腐蚀与磨损交互作用研究[D];南京航空航天大学;2007年

6 余先涛;铝合金表面激光熔覆Ni基合金及其摩擦学特性研究[D];武汉理工大学;2005年

7 曹发和;高强度航空铝合金局部腐蚀的电化学研究[D];浙江大学;2005年

8 何欢;铝合金/不锈钢热丝TIG熔-钎焊接头组织与性能研究[D];哈尔滨工业大学;2014年

相关硕士学位论文 前10条

1 王增勇;双疏铝合金表面制备及其性能研究[D];大连海事大学;2015年

2 王恒;船用5383铝合金在模拟海水中的腐蚀行为研究[D];宁夏大学;2015年

3 刘馨;2024铝合金电解着黑色工艺及膜层性能研究[D];沈阳理工大学;2015年

4 李正斌;铝合金A-TIG焊接头裂纹分析及工艺性能研究[D];江苏科技大学;2015年

5 刘扬;某铝合金人行天桥的结构分析[D];南昌大学;2015年

6 刘冰洋;富镁涂层对LY12铝合金点蚀的抑制作用研究[D];北京化工大学;2015年

7 王晓;铝合金表面处理工业废渣制备氢氧化铝阻燃剂研究[D];北京化工大学;2015年

8 方,

本文编号:2203482


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2203482.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8f0ea***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com