Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究
[Abstract]:Mg-Zn-Gd rare earth magnesium alloys have good mechanical properties at room temperature and excellent creep resistance at high temperature. They have attracted great attention in aerospace, military and automotive industries. They are one of the most promising heat-resistant magnesium alloys at present. The solidification characteristics, microstructure control and the relationship between microstructure and mechanical properties of Mg-Zn-Gd alloys are still poorly understood and systematically studied in this paper. Secondly, the free solidification paths of Mg-Zn-Gd ternary alloys with different cooling rates and alloy compositions were studied by free solidification method, and the prediction model of the free solidification paths of Mg-5.5Zn-2.0Gd-0.6Zr (w) ternary alloys was established. Finally, the free solidification paths of Mg-5.5Zn-2.0Gd-0.6Zr (w) were designed and prepared. The main conclusions are as follows: (1) A modified Yokoyama self-diffusion coefficient model is proposed, and the self-diffusion coefficients of pure metal elements such as Mg, Zn, Gd, Al, Si are calculated and determined. The calculation model of solute liquid diffusion coefficients of multicomponent alloys is established. By calculating the solute liquid diffusion coefficients of Al-Si-Mg, Al-Cu-Mg and Al-Fe-Ni alloys, it is found that the calculated results are in good agreement with the experimental values, which proves that the model is reasonable and credible, and the solute liquid phase of Mg-5.5Zn-2.0Gd (wt%) alloy is determined. (2) The microstructure evolution of Mg-xGd (x=1.38, 2.35, 4.38 wt%) alloy under different solidification conditions was studied. The results show that the solidified microstructure of Mg-1.38 Gd and Mg-2.35 Gd alloys is cellular morphology in the wide pull-out rate range (10-200 micron/s), and the critical growth rate of CELL-DENDRITE transition calculated by Kurz-Fisher model is not found. Dendritic structure appears near vc-d. It is found that this is related to the lower alloy concentration and higher temperature gradient. For Mg-4.38G D alloy with higher G D content, dendritic structure appears in the alloy when v=100~200 micron/s. In addition, the intercellular spacing (lambda) and the growth of Mg-xGd alloy at the conditions of G=20~30K/mm and v=10~200 micron/s are determined by nonlinear fitting. The quantitative relationship between the long parameters (G, v) is found to be consistent with the predicted values of Trivedi model. (3) The solidification microstructure and micro-segregation behavior of Mg-xGd (x = 1.38, 2.35, 4.38 wt%) alloy are determined. The results show that the predicted solidification path and micro-segregation behavior of Mg-Gd binary alloy are consistent with those of Scheil model. Experimental results show that the tensile properties of directionally solidified Mg-2.35Gd alloy at room temperature are significantly higher than those of freely solidified Mg-2.35Gd alloy at the same cooling rate. (4) The evolution of solidification microstructure of Mg-5.5Zn-xGd (x=0,0.8,2.0,4.0wt%) alloy under different solidification conditions was studied for the first time. It was found that the critical growth rate of CELL-DENDRITE transition (vc-d) decreased with the increase of solute Gd content. (5) The mechanical properties of Mg-5.5Zn-xGd (x=0,0.8,2.0,4.0 wt%) alloy at room temperature were studied under different solidification parameters. The tensile strength of Mg-5.5Zn-xGd alloy increased with the growth rate when the alloy composition was constant. The tensile strength of Mg-5.5Zn-2Gd alloy increases at first and then decreases with the increase of Gd content at the same growth rate. It is found that the tensile strength of Mg-5.5Zn-2Gd alloy is the best at room temperature. (6) The free solidification path of Mg-5.5Zn-2.0Gd (wt%) alloy is studied. When the cooling rate is greater than or equal to 7.71K/s, the eutectic phase of the alloy is alpha(Mg)+I(Mg_3Zn_6Gd). A computational model for the free solidification path of multi-component alloy is established, which takes into account the factors of liquid diffusion and cooling rate. The calculated results are in good agreement with the experimental results. On the contrary, the higher the content of Gd and the lower the cooling rate, the easier W (Mg3Gd2Zn3) phase will be formed. The mechanical properties show that the tensile strength, yield strength and elongation of Mg-5.5Zn-2.0Gd alloy increase with the increase of cooling rate, and the tensile fracture surface of Mg-5.5Zn-2.0Gd alloy increases with the increase of cooling rate. The intergranular fracture characteristics under the alloy changed to transgranular fracture characteristics at higher cooling rate. It was found that besides grain refinement, the formation of more quasicrystalline I (Mg_3Zn_6Gd) phase enhanced the strength of the alloy. (7) Mg-5.5Zn-2.0Gd-0.6Zr (wt%) sand mold casting magnesium alloy was designed and prepared. The microstructure and mechanical properties of the alloy during heat treatment have been studied systematically. The as-cast microstructure of the alloy consists of a (Mg), a (Mg) + W (Mg_3Zn_3Gd_2) eutectic at grain boundary and I (Mg_3Zn_6Gd), Mg3Gd and a (Zr) phase in the crystal. After solution treatment, the eutectic of a (Mg) + W (Mg_3Zn_3Gd_2) in the as-cast microstructure disappears mostly and the residual W (Mg_3Zn_3Gd_2) phase disappears. At the same time, the rod-like Zn_2Zr_3 phase is formed in the alloy matrix. After T6 heat treatment, the rod-like beta_1'phase and the disc-like beta_2' phase precipitate in the alloy matrix. The analysis of the strengthening mechanism at room temperature shows that the tensile strength and yield strength of the alloy at room temperature are 189 MPa and 98 M due to the combination of solution strengthening and aging strengthening. Compared with ZK51A industrial alloy, the tensile strength at room temperature and yield strength of T6 alloy are increased by 14.29% and 26.81% respectively. Meanwhile, the high temperature mechanical properties of the alloy are obviously better than those of ZK51A industrial alloy.
【学位授予单位】:西北工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG146.22
【相似文献】
相关期刊论文 前10条
1 张勇;周云军;陈国良;;快速发展中的高熵溶体合金[J];物理;2008年08期
2 梁秀兵;魏敏;程江波;张伟;徐滨士;;高熵合金新材料的研究进展[J];材料工程;2009年12期
3 郭娜娜;孙宏飞;牛占蕊;朱海云;李忠丽;;优异特性的集合体——多主元高熵合金[J];新材料产业;2011年01期
4 H·W·罗森伯格,吴之乐;钛的合金化理论与实践[J];稀有金属合金加工;1973年S1期
5 谢自能;熊易芬;;Au-Pd-Fe-Al合金的电阻变化特性[J];贵金属;1981年01期
6 Б.А.Колачев,王国宏;论钛合金的合金系[J];稀有金属材料与工程;1985年01期
7 张陟;;捔-锂系合金最近的开发动向[J];材料导报;1989年02期
8 刘世程,浜口由和,桑野寿;Fe-Cr-Mo,Fe-Cr-W合金中的过渡R相[J];金属学报;1990年06期
9 秦敬玉,边秀房,王伟民,S.I.Sijusarenko,徐昌业,马家骥;铝铁合金熔体的微观多相结构[J];中国科学E辑:技术科学;1998年02期
10 王玲玲,黄维清,邓辉球,李小凡,唐黎明,赵立华;准晶合金形成规律的探讨[J];稀有金属材料与工程;2003年11期
相关会议论文 前10条
1 郭伟;梁秀兵;陈永雄;王林磊;;高熵合金的研究现状与发展趋势[A];2011年全国青年摩擦学与表面工程学术会议论文集[C];2011年
2 李宏祥;吕昭平;王善林;李承熏;;工业原材料制备的块体非晶钢合金的形成能力及性能研究[A];2008中国铸造活动周论文集[C];2008年
3 朱志光;张勇;;TiZrNb系高熵合金的组织结构和力学性能[A];2011中国材料研讨会论文摘要集[C];2011年
4 张志;王朝龙;余东满;陈春玲;;快速凝固法制备钕基合金磁性材料[A];第八届21省(市、自治区)4市铸造学术年会论文集[C];2006年
5 郑炳铨;冯以盛;陈士仁;;非共晶感温合金的熔断温度[A];首届中国功能材料及其应用学术会议论文集[C];1992年
6 李宏祥;吕昭平;王善林;李承熏;;块体非晶钢合金的研究应用现状与展望[A];2009中国铸造活动周论文集[C];2009年
7 张玉平;张津徐;吴建生;梅品修;;Cu-Mn-Zn系合金的色度研究[A];第十届全国相图学术会议论文集[C];2000年
8 尹付成;苏旭平;张平;李智;;Pr-Al合金系的热力学模型[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
9 马丽娜;王蓉;郭可信;;急冷合金Al_5Ir中准晶态的研究[A];第五次全国电子显微学会议论文摘要集[C];1988年
10 庄应烘;;铜基C_u-C_o-C_r-S_i电极合金的研究[A];中国电子学会生产技术分会第五届金属材料及热处理年会论文集(一)[C];1994年
相关重要报纸文章 前2条
1 杨燕群;谢佑卿:探寻合金“类基因”序列的征程[N];科技日报;2005年
2 夏德宏;镁合金的冶金特性与合金化原理[N];中国有色金属报;2011年
相关博士学位论文 前10条
1 高伟;Zr-Cu合金快速凝固过程中微观结构演化及动力学性质的模拟研究[D];燕山大学;2015年
2 韩建超;TiB_2及Ni对Ti-48Al-2Cr-2Nb合金凝固组织与性能的影响[D];哈尔滨工业大学;2016年
3 刘少军;Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究[D];西北工业大学;2016年
4 宋文杰;Mg-Ni-Y合金的相形成机制与吸放氢性能研究[D];西北工业大学;2016年
5 薛云龙;Laves相Cr_2Nb/Ti复相合金的显微组织及力学性能研究[D];西北工业大学;2016年
6 宋西贵;合金熔体脆性的广义性研究[D];山东大学;2009年
7 邓辉球;二元合金系表面聚集的计算机模拟研究[D];湖南大学;2001年
8 王玉青;合金熔体的黏滞特性研究[D];山东大学;2007年
9 白延文;合金熔体局域结构及其遗传性研究[D];山东大学;2014年
10 余瑾;合金熔体电子传输性质的温度行为及其与凝固相关性研究[D];合肥工业大学;2009年
相关硕士学位论文 前10条
1 朱建波;高熵合金的制备及合金元素对组织与性能的影响[D];吉林大学;2013年
2 魏文博;Mg-10%Ca-6%Zn合金力学及腐蚀性能研究[D];长安大学;2015年
3 刘用;Al_xCrCuFeNi_2高熵合金的组织结构及摩擦学性能研究[D];太原理工大学;2016年
4 张清;稀土元素对Mg-Al合金性能影响的第一性原理研究[D];中北大学;2016年
5 雷文斌;合金元素对高熵合金组织与性能的影响[D];东北大学;2014年
6 陈玉鹤;高饱和磁化强度FeSiBM系非晶纳米晶软磁材料制备研究[D];燕山大学;2016年
7 刘万理;热处理对SPS烧结Ti-24Nb-4Zr-8Sn合金力学与电化学腐蚀行为的影响[D];昆明理工大学;2016年
8 马峥;稀土基多相合金磁热效应研究[D];电子科技大学;2016年
9 吴朋慧;AlCoCrCuFeMoNi系多元高熵合金的微结构与性能相关性研究[D];江苏科技大学;2016年
10 黄金角;合金化及物理场对AZ91镁合金凝固组织和力学性能的影响[D];南昌航空大学;2016年
,本文编号:2211303
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2211303.html