新型7A56铝合金半连续铸锭组织及其在均匀化过程中的演化
[Abstract]:The pursuit of higher strength grade and better comprehensive properties is the eternal development direction of 7xxx series aluminum alloys. Increasing alloying degree is becoming the main trend of composition design of 7xxx series aluminum alloys. In this paper, a new type of highly alloyed 7A56 aluminum alloy ingot with large size and semi-continuous casting was prepared under industrial conditions. The regularity of non-equilibrium solidified precipitates during homogenization heat treatment was studied systematically, which provided a basis for composition design and heat treatment technology innovation of highly alloyed 7xxx aluminum alloy. The research emphasis of this paper is to study the dissolution law of the non-equilibrium solidified precipitate phase in the ingot and its effect on the matrix structure of aluminum alloy. Based on the microstructure characteristics of the specimens and sizes of ingots, the possible effects of microstructure homogeneity on subsequent experiments were evaluated. The evolution of non-equilibrium solidified precipitates and their effects on the microstructure of aluminum matrix during homogenization were systematically studied. Low mass fraction, high hardness at center and center, low electrical conductivity and large average grain size; low hardness at the edge of ingot, high electrical conductivity and fine average grain size. Relatively speaking, the uniformity of the center and middle of ingot is good. There are a large number of non-equilibrium solidified precipitates in ingot structure, and the second phase at different positions. The second phase mainly consists of low melting point Al-Zn-Mg-Cu-rich phase (T phase), a small amount of Al_2Cu phase (theta phase) and insoluble acicular Al_7Cu_2Fe phase, in which T phase is the main non-equilibrium eutectic phase. The average lattice constant of as-cast 7A56 alloy is 4.051-78 A, the hardness is 102 HV, and the conductivity is 22.8 Ms/m. The single-stage homogenization heat treatment process showed that the temperature affected the transformation of T phase and the limit of solubilization. The T phase could be partially transformed into Al2CuMg phase (S phase) at 380 C. Most of the T phase still retained the original eutectic network structure; the solubilization of T phase was less than 5%. After homogenization heat treatment at 430 C, the T phase could be partially transformed into Al2CuMg phase (S phase). The residual T-phase eutectic structure was dissolved in the interior and the edge became discontinuous. The T-phase was about 50%-60%. Homogenization heat treatment at 470 C resulted in the T-phase directly dissolving and no S-phase transformation was observed. The residual T-phase eutectic structure was completely destroyed and the T-phase solubility was more than 90%. The hardness of the alloy increases, the conductivity decreases, and the lattice constant increases with the increase of the amount of T-phase. The two-stage homogenization heat treatment process of 7A56 aluminum alloy shows that the amount of residual T-phase in the matrix after low temperature treatment (430 C / 12h). In addition, the T-phase can be rapidly dissolved by continuous treatment at high temperature (470 C), and the transformation of T-phase to S-phase has not been observed during the whole process. With the increase of the first treatment temperature, the number of square Al_3Zr particles increased gradually. After 400 C/12h+470 C/24h treatment, the Al_3Zr particles precipitated from the alloy presented spherical or petal shape; after 430 C/12h+470 C/24h treatment, a small amount of square Al_3Zr particles appeared; after 450 C/12h+470 C/2 h treatment, a small amount of square Al_3Zr particles appeared. After 4 h treatment, the proportion of square Al_3Zr particles is obviously increased. The electron diffraction patterns of round and square Al_3Zr particles are the same, indicating that square particles and round particles have similar crystal structures.
【学位授予单位】:北京有色金属研究总院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG146.21;TG292
【相似文献】
相关期刊论文 前10条
1 ;汨罗龙舟铝业公司引进高技术均匀化炉[J];轻合金加工技术;2009年03期
2 ;恺撒铝业公司购进移动式长锭均匀化炉[J];轻合金加工技术;2009年06期
3 ;可改善和提高玻璃均匀化效果的玻璃池炉[J];玻璃与搪瓷;2009年04期
4 毛允静;董毅;;碳在碳钢中的均匀化[J];钢铁;1989年11期
5 周守则,潘复生,丁培道,刘晶元,陈家应;稀土对6063合金均匀化退火组织的影响[J];轻合金加工技术;1989年09期
6 G.Hertwich;张正国;;用于铝挤压铸锭的现代均匀化设备(上)[J];轻合金加工技术;1987年08期
7 聂存中;霍志文;廖南练;张厚安;;论6063合金铸锭均匀化问题以及工艺制度研究——建议中小型铝型材厂改变不均匀化处理的工艺[J];轻合金加工技术;1991年10期
8 王国军;徐忠艳;;车厢板用变形铝合金5383熔铸及均匀化工艺的确定[J];铝加工;2008年01期
9 周雄多;梁敬钧;黄峥;;小规格6060铝合金铸棒均匀化生产实践[J];企业科技与发展;2012年09期
10 聂波;苏学常;;过渡元素在铝中存在形式对其性能的影响[J];轻合金加工技术;1993年02期
相关会议论文 前8条
1 樊喜刚;蒋大鸣;孟庆昌;;均匀化工艺对Al-Mg-Mn挤压合金性能的影响[A];2004年材料科学与工程新进展[C];2004年
2 李满仓;王侃;姚栋;;B_N理论在连续能量蒙卡方法产生均匀化群常数上的应用[A];中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第6册(核物理分卷、计算物理分卷、粒子加速器分卷)[C];2011年
3 樊喜刚;蒋大鸣;孟庆昌;;均匀化工艺对Al-Mg-Mn挤压合金性能的影响[A];2004年中国材料研讨会论文摘要集[C];2004年
4 胥国华;张北江;秦鹤勇;赵光普;王林涛;赵长虹;;GH4742合金大锭型均匀化工艺研究[A];动力与能源用高温结构材料——第十一届中国高温合金年会论文集[C];2007年
5 胡永明;施工;杨雪;;堆芯输运计算的均匀化问题[A];全国计算物理学会第六届年会和学术交流会论文摘要集[C];2007年
6 胡永明;施工;杨雪;经荥清;单文志;徐小琳;;输运方程组件均匀化问题[A];第十三届全国核物理大会暨第八届会员代表大会论文摘要集[C];2007年
7 李念奎;冯正海;;2524铝合金铸锭均匀化过程中相的变化[A];全国第十四届轻合金加工学术交流会论文集[C];2009年
8 冯永平;邓明香;;周期复合材料压电均匀化常数的数值模拟[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
相关博士学位论文 前6条
1 易斯男;基于均匀化的周期性梁板结构降阶及拓扑优化[D];大连理工大学;2015年
2 吴鸣宇;磨粒流小压差均匀化抛光方法的研究[D];大连理工大学;2016年
3 黄灏;非全反射条件下粗网格等效均匀化参数的计算及应用[D];上海交通大学;2008年
4 李满仓;连续能量蒙特卡罗方法组件均匀化研究[D];清华大学;2012年
5 张永v,
本文编号:2217608
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2217608.html