硼钢HC1500HS热冲压工艺与热力相变耦合建模仿真
[Abstract]:Using (ultra) high strength steel sheet to make body parts can not only reduce body weight and fuel consumption, but also ensure and improve vehicle safety. It is the best way to realize lightweight and improve collision safety at the same time. The conventional cold stamping process is almost impossible to form. Therefore, how to achieve high-precision stamping of high-strength steel sheet becomes an urgent technical problem to be solved. After austenitizing (900-950 C), it is transferred to the press quickly. After forming with a cooling system, the martensite structure is obtained by cooling and quenching in the die. The tensile strength of the quenched steel sheet is about 1500MPa or even higher. This paper mainly focuses on the engineering scientific problems and technical difficulties of hot stamping forming process of ultra-high strength boron steel. The effects of heating rate, heating temperature and holding time on the high temperature formability of boron steel were studied by the thermal expansion test on Gleeble-3500 thermal simulator. Based on the austenite nucleation and growth theory and considering the effect of heating rate, a unified austenite transformation kinetics model of HC1500HS for boron steel under non-isothermal conditions is established. The model is progressed by using MATLAB. The material constants in the model are solved by the algorithm toolbox, and the unified phase transformation kinetic model can accurately predict the thermal expansion curve and austenite volume percentage of boron steel austenite during non-isothermal heating process. The model considers the process parameters such as heating temperature (800-1000 C), holding time (60-540 s), forming temperature (560-800 C) and die temperature (20-220 C). Based on the response surface model, the influence of each process parameter on the mechanical properties of hot stamping parts is studied, and the process parameters are processed by NSGA-II multi-objective evolutionary algorithm. The optimized results will provide experimental basis and theoretical guidance for the selection of hot stamping process parameters. A set of round table device is designed and manufactured to measure the temperature curves of sheet metal and die during hot stamping and pressure-holding quenching of boron steel. The interfacial heat transfer coefficient between boron steel and the influence of pressure and oxide thickness on the interfacial heat transfer coefficient are studied. The study provides a theoretical basis for calculating the temperature of plate and die during quenching of hot stamping cold die, and provides a data basis for accurately calculating the phase transformation in hot stamping process. The thermal expansion test of boron steel HC1500HS was carried out. The effect of cooling rate and deformation on the transformation process of supercooled austenite during continuous cooling of boron steel HC1500HS was studied. The critical cooling rate of microstructure transformation of the steel was determined. The dynamic Austenite Continuous Cooling Transformation Curve (DCCT curve) of boron steel HC1500HS was worked out. The transformation kinetics model of ferrite and bainite of boron steel HC1500HS under non-isothermal condition is established. The obtained model can well predict the transformation products of boron steel at different cooling rates and deformation degrees. Finite element simulation of microstructure is carried out to obtain the distribution characteristics of sheet temperature, microstructure and Vickers hardness in hot stamping process of car door crashproof beam. The numerical calculation validity of coupled thermo-mechanical phase transformation finite element model is verified by experiment, and the finite element prediction of microstructure evolution process of hot stamping parts is realized to control hot stamping parts. The effects of forming temperature, mold temperature, holding pressure and holding time on the microstructure of hot stamping parts of anti-collision beam were studied by finite element model.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG306
【参考文献】
相关期刊论文 前10条
1 盈亮;赵荣秀;高天涵;胡平;郭威;;22MnB5硼钢的气雾淬火工艺参数优化[J];材料热处理学报;2015年10期
2 张志强;贾晓飞;赵勇;李湘吉;;高强度硼钢淬火界面热交换系数的实验与模拟[J];吉林大学学报(工学版);2015年04期
3 常颖;李树娟;唐行辉;李晓东;王存宇;赵坤民;;22MnB5钢表面微观形貌对界面换热系数的影响[J];材料热处理学报;2015年03期
4 陈亚洪;张磊;孙晓屿;王武荣;;热冲压用硼钢B1500HS高温非等温变形性能研究[J];上海金属;2015年01期
5 王梦寒;王彦丽;;BR1500HS硼钢热冲压表面涂层研究[J];热加工工艺;2014年15期
6 Jing Zhou;Bao-yu Wang;Ming-dong Huang;Dong Cui;;Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips[J];International Journal of Minerals Metallurgy and Materials;2014年06期
7 刘雨阳;闵峻英;辛立久;金建伟;刘强;林建平;;热冲压成形工艺参数对硼钢板帽形件回弹影响分析[J];锻压技术;2014年03期
8 金伟;王强;杨幸东;;热冲压主要工艺参数及对成形的影响[J];热加工工艺;2014年01期
9 盈亮;贾治域;常颖;唐行辉;李树娟;靳菲;赵坤民;;高强度热冲压钢板强韧性工艺优化研究[J];材料科学与工艺;2013年06期
10 周靖;王宝雨;徐伟力;黄鸣东;易生虎;校文超;;耦合损伤的22MnB5热变形本构模型[J];北京科技大学学报;2013年11期
相关博士学位论文 前6条
1 王超;高强钢热成形接触导热和零件力学性能及工艺优化研究[D];华中科技大学;2014年
2 盈亮;高强度钢热冲压关键工艺试验研究与应用[D];大连理工大学;2013年
3 谭小红;细长杆多腔模注塑成型工艺多因素多目标集成优化[D];江苏大学;2013年
4 张磊;高强度钢板热冲压过程的模具温度控制与数值模拟技术研究[D];山东大学;2013年
5 贺连芳;硼钢B1500HS的热冲压关键参数测试及其淬火性能研究[D];山东大学;2012年
6 宁保群;T91铁素体耐热钢相变过程及强化工艺[D];天津大学;2007年
相关硕士学位论文 前10条
1 房曙光;热冲压高强钢高温防氧化实验[D];吉林大学;2015年
2 靳菲;第三代汽车中锰钢力学性能与成形参数探究[D];大连理工大学;2015年
3 刘朝阳;高强度硼钢热冲压界面热交换系数实验与模拟研究[D];吉林大学;2015年
4 贾迎婷;超高强度厚钢板热成形换热性能研究及工艺参数优化[D];吉林大学;2015年
5 唐行辉;22MnB5钢热成形中IHTC求解及影响因素分析[D];大连理工大学;2014年
6 陈静;奥氏体化温度与过冷度对高强度贝氏体钢相变的影响研究[D];武汉科技大学;2014年
7 李楠;基于遗传算法的瞬态非线性热传导反问题研究[D];大连理工大学;2014年
8 孙莹;先进高强度钢板冲压成形破裂实验研究与表征分析[D];上海交通大学;2014年
9 范国文;超高强度硼钢热冲压关键影响因素数值分析[D];吉林大学;2013年
10 廖铮玮;高强度钢板热成形换热系数估算及实验研究[D];大连理工大学;2013年
,本文编号:2225622
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2225622.html