离子液体缓蚀剂缓蚀机理的理论研究
[Abstract]:Metal corrosion is common in the fields of national economy, national defense construction, science and technology, and its harm is very serious, so it is necessary to take some protective measures. As a simple and effective additive, corrosion inhibitor has become the most commonly used anticorrosion method. Ionic liquids have been used as potential corrosion inhibitors because of their heterocyclic structure, heteroatoms (such as Nu OS) and multiplex bonds, and have been used in the field of metal corrosion protection. A lot of progress has been made in recent years, but at present, the research of ionic liquid corrosion inhibitor is mainly focused on the corrosion inhibition performance and efficiency, and the microscopic mechanism of the inhibition process is less studied. In this paper, three systems (1-alkyl-3-methylimidazole [XMIM] [C1] system) of 1-alkyl-3-methyl imidazole acetate [XMIM] [Ac] and 1-octyl -3-methyl imidazolium salt [OMIM] [Y] system, in which X is ethyl, Ding Ji, Eleven kinds of ionic liquids, hexyl and octyl (Cl,BF4,HS04,Ac and TfO), were used to inhibit corrosion of low carbon steel. The electronic structure and reaction activity of ionic liquids, surface energy and electronic structure of iron surface were systematically analyzed by quantum chemical calculation. The adsorption behavior of ionic liquids on iron surface was studied by molecular dynamics simulation, and the microscopic mechanism of corrosion inhibition process was revealed. The results are as follows: it is found that for [XMIM] [C1] and [XMIM] [Ac] systems with different cations of the same anion, with the increase of alkyl chain length, the maximum occupied orbital energy, (EHOMO), and the lowest orbital energy, (ELUMO), softness (5) and polarizability (伪), increase gradually. The energy gap difference (E), dipole moment 渭), hardness (畏) and electrophilic index (蠅) decreased gradually. The quantum chemical parameters of ionic liquids vary greatly in the same cationic [OMIM] [Y] system. Only the polarizability (伪) tends to increase. The order of surface energy 纬 of Fe (100) Fe (110) and Fe (111) surfaces is 纬 Fe (111) 纬 Fe (100) 纬 Fe (110), which indicates that the structure of Fe (110) surface is the most compact and stable. The 3D orbital on iron surface is most active. Fe (110) is easy to interact with not only the anion containing oxygen but also the imidazole ring of ionic liquid cationic. Therefore, the Fe (110) surface is selected as the adsorption surface of ionic liquids. The results show that for [XMIM] [C1] system, the inhibition efficiency is mainly cationic [XMIM], and the order of inhibition efficiency is [OMIM] [Cl] [HMIM] [BMIM] [C1] [EMIM] [C1] [EMIM] [C1]. [XMIM] [Ac] the order of inhibition efficiency is [OMIM] [Ac] [HMIM] [Ac] [BMIM] [Ac] [EMIM] [EMIM] [Ac]. The order of inhibition efficiency is [OMIM] [Ac] [HMIM] [Ac] [BMIM] [Ac] [EMIM] [EMIM] [Ac]. In [OMIM] [Y] system, both cation [XMIM] and anionic BF4-,HSO4-,Ac-,TfO- can inhibit corrosion. The order of inhibition efficiency is [OMIM] [TfO] [OMIM] [Ac] [OMIM] [HS04] [OMIM] [BF4] [OMIM] [C1]. In either system, cationic or anion ions of ionic liquids are adsorbed and covered on the surface of Fe (110) to form a protective film, which hinders the interaction between the corrosion medium (H _ 2O _ H _ 3O _ 3O _ (Cl-) and the metal surface in order to achieve the purpose of corrosion inhibition. In conclusion, [OMIM] [TfO] is the best corrosion inhibitor in 11 ionic liquids studied.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG174.42
【参考文献】
相关期刊论文 前9条
1 王彩云;;金属腐蚀的危害及防护[J];机械管理开发;2012年05期
2 陈建华;王进明;龙贤灏;郭进;;硫化铜矿物电子结构的第一性原理研究[J];中南大学学报(自然科学版);2011年12期
3 张文谦;蔡邦宏;;金属腐蚀与防护的理论和方法[J];内江科技;2011年03期
4 张启波;华一新;;咪唑离子液体对铜在硫酸溶液中的缓蚀作用(英文)[J];物理化学学报;2011年03期
5 赵巍;汪家道;刘峰斌;陈大融;;H_2O分子在Fe(100),Fe(110),Fe(111)表面吸附的第一性原理研究[J];物理学报;2009年05期
6 陶琦;李芬芳;邢健敏;;金属腐蚀及其防护措施的研究进展[J];湖南有色金属;2007年02期
7 葛红花;汪洋;周国定;李新学;;普及金属腐蚀与防护知识重要性的研究[J];上海电力学院学报;2007年01期
8 王鹏;王大喜;高金森;董坤;徐春明;刘靖疆;;三氯化铝烷基氯化咪唑盐结构和红外光谱的模拟计算[J];高等学校化学学报;2006年08期
9 张芳英,滕英元,张美霞,朱圣龙;Al(001)、Al(110)、Al(111)面表面能的密度泛函理论计算[J];腐蚀科学与防护技术;2005年01期
相关博士学位论文 前7条
1 曾建平;无磷阻垢缓蚀剂的分子动力学模拟研究[D];南京理工大学;2013年
2 陈国浩;二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究[D];北京化工大学;2012年
3 李雪梅;醇胺离子液体—醇—水体系相平衡的测定与过程模拟[D];北京化工大学;2012年
4 胡晓东;离子液体的电致驱动及变焦离子液体透镜的研究[D];兰州大学;2012年
5 鲍少华;新型酸功能化离子液体的制备及其在有机合成中的应用[D];华东师范大学;2012年
6 王彬;油气田用抑制CO_2腐蚀的咪唑啉类缓蚀剂的缓蚀行为研究[D];中国海洋大学;2011年
7 刘一男;1,,2-萘醌-1-肟铑含氯配合物合成及量子化学计算[D];东北大学;2010年
相关硕士学位论文 前5条
1 李东旭;铝和铁表面自扩散的分子动力研究[D];广西大学;2015年
2 王丁;有机分子对离子液体结构与性质的影响研究[D];昆明理工大学;2013年
3 苏现想;室温离子液体与水相互作用的理论研究[D];昆明理工大学;2012年
4 万小波;Materials Studio计算金属表面能及在电镀中的应用[D];电子科技大学;2011年
5 王豆豆;晶体表面结构及能量各向异性的理论分析[D];陕西师范大学;2007年
本文编号:2231051
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2231051.html