二维振动抛光装置的研究
[Abstract]:Both advanced manufacturing and the completion of high-end equipment products require surface polishing technology. In high-tech fields such as mobile phone communications, automobile manufacturing, aerospace and navigation, the surface quality of microstructural components plays an important role in the completion of major tasks for the equipment. How to improve the surface quality of micro-nano structure of important components has become a key technical problem that needs to be solved urgently. The existing surface polishing techniques, such as ultrasonic elliptical vibration polishing, air bag polishing and laser polishing, are mature, but the device design is complex. In this paper, the elliptical vibration is innovatively applied to the polishing of workpiece surface, which is different from ultrasonic elliptic vibration. In this paper, the piezoelectric stack is used to drive the polishing grinding head directly through the flexure hinge, and the sinusoidal signal is applied to the orthonormal stacked piezoelectric stack. This signal has a certain phase difference, which drives the polishing head to finish the elliptical polishing motion. On the one hand, elliptical vibration polishing can effectively improve the surface quality of the workpiece, on the other hand, it can effectively improve the polishing efficiency by increasing the polishing frequency. In this paper, two kinds of elliptical vibration polishing devices are designed: two dimensional elliptical vibration polishing device and three dimensional elliptical vibration polishing device. Two kinds of hinge structures are designed and statically analyzed by ANSYS software, modal analysis is carried out to avoid coupling phenomenon and resonance phenomenon. A two-dimensional elliptical vibration polishing device was fabricated. The experiments on the surface polishing of aluminum alloy and brass proved that the elliptical vibration polishing device can effectively reduce the surface roughness of the polished workpiece. The main contents of this paper are as follows: firstly, the elliptical vibration polishing device is designed. The device directly uses the piezoelectric stack driven polishing head to polishing with ultra-precision machine tools, which makes the polishing process more concise. The surface of the polished workpiece is smoother. The theory of elliptical vibration polishing is analyzed, including the principle of elliptical motion, the structure analysis of flexure hinge and the research of piezoelectric stack driving method. Two polishing devices are designed. The two-dimensional elliptical vibration polishing device is also tried to be machined. Secondly, the performance of 2-D elliptical vibration polishing device is tested by using microsense II5300 capacitive displacement sensor, piezoelectric stack, power amplifier PMAC-motion control card, Siemens industrial control computer and push-pull dynamometer, etc., using Newport RS4000 air floatation vibration isolator, micro sense II5300 capacitive displacement sensor, piezoelectric stack, power amplifier, PMAC motion control card, and push-pull dynamometer, etc. The laboratory noise, the stiffness of the device and the natural frequency of the device are tested, and the reliability of the device design is verified. Finally, three kinds of workpieces, aluminum, brass and red copper, are polished by using a two-dimensional elliptical vibration polishing device. It is proved that the two-dimensional elliptical vibration polishing can reduce the surface roughness of the workpiece by testing the surface quality of the workpiece. A comparative polishing experiment was carried out with two polishing heads of different materials (wool and rubber). Under the same polishing conditions, the surface roughness of the workpiece thrown by the wool grinding head was lower than that of the other. It is verified that the material of polishing grinding head also has certain influence on the roughness of workpiece surface.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG580.2
【相似文献】
相关期刊论文 前10条
1 肖华;李勋;张德远;;天然金刚石刀具单激励超声椭圆振动车削[J];航空制造技术;2007年09期
2 J.Stejskal;王峰;;椭圆振动筛[J];矿山机械;1984年05期
3 王亭杰;;椭圆振动筛抛射角的调节[J];矿山机械;1989年10期
4 张明洪;马天宝;;钻井液平动椭圆振动筛原理[J];天然气工业;1990年04期
5 龚伟安;;椭圆振动筛设计理论中的几个问题[J];矿山机械;1990年12期
6 赵专东;张娜;;椭圆振动筛系统分析与虚拟样机仿真[J];冶金设备;2013年S2期
7 唐军;赵波;;超声波椭圆振动加工技术的研究进展[J];金刚石与磨料磨具工程;2014年01期
8 刘建平,尹忠俊,冯爱兰;双轴椭圆振动筛系统动力学分析[J];冶金设备;2002年01期
9 马春翔,胡德金;超声波椭圆振动切削技术[J];机械工程学报;2003年12期
10 肖华;李勋;张文全;姜兴刚;张德远;;实用化振动切削技术——椭圆振动车镗工艺及装备[J];新技术新工艺;2006年12期
相关会议论文 前3条
1 周忠源;刘传振;孝保忠;;2685型椭圆振动筛常见故障分析及处理[A];2008年全国炼铁生产技术会议暨炼铁年会文集(下册)[C];2008年
2 瞿娇娇;黄帅;刘新;徐文骥;;超声波椭圆振动装置设计及其振动特性控制[A];第15届全国特种加工学术会议论文集(下)[C];2013年
3 赵专东;张娜;;椭圆振动筛系统分析与虚拟样机仿真[A];中国金属协会冶金设备分会第二届第一次冶金设备设计学术交流会论文集[C];2013年
相关博士学位论文 前3条
1 杨卫平;超声椭圆振动—化学机械复合抛光硅片技术的基础研究[D];南京航空航天大学;2008年
2 卢明明;三维椭圆振动辅助切削装置及控制的研究[D];吉林大学;2014年
3 胡欣峰;自同步椭圆振动筛动力学研究[D];西南石油学院;2004年
相关硕士学位论文 前10条
1 喻栋;钛合金TC4的单激励超声波椭圆振动切削系统的研究[D];哈尔滨工业大学;2015年
2 周瑞;超声椭圆振动辅助抛光硅片表面形貌与材料去除仿真[D];江西农业大学;2015年
3 赵永亭;超声椭圆振动切削工作头的研究[D];东北大学;2014年
4 闫贺亮;非共振型椭圆振动装置及运动控制研究[D];吉林大学;2016年
5 刘博;椭圆振动辅助车削中切削力的预测研究[D];吉林大学;2016年
6 张毫杰;三维椭圆振动切削系统建模及其控制的研究[D];长春工业大学;2016年
7 史桂林;基于超声椭圆振动辅助的表面微织构切削加工技术研究[D];南京航空航天大学;2016年
8 宗昌生;难加工材料的超声椭圆振动切削技术研究[D];西南石油大学;2016年
9 马培群;二维振动抛光装置的研究[D];吉林大学;2017年
10 张晨峰;椭圆振动超精密微细切削系统设计及机理研究[D];哈尔滨工业大学;2012年
,本文编号:2234998
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2234998.html