机械球磨和热挤压制备超细晶5083铝合金的微观组织与力学性能研究
[Abstract]:5083 aluminum alloy is widely used in aircraft, automobile, ship, launching tower, drilling platform, armored vehicle and other fields because of its low density, high strength, good toughness and good corrosion resistance. Among them, fine-grained is to prepare materials with ultra-fine or nano-crystalline structure, which is a development direction to improve the performance of materials. At present, powder metallurgy method is one of the effective methods to prepare nano-crystalline/ultra-fine-grained materials. Bulk ultrafine grain 5083 aluminum alloy was prepared by extrusion. The microstructure of powder and bulk materials was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction and metallographic analysis. The mechanical properties, thermal stability and corrosion resistance of bulk materials were studied. 5083 aluminum alloy powders were prepared by mechanical milling at room temperature under inert gas atmosphere. TEM observation showed that the microstructure of 5083 aluminum alloy powders was composed of equiaxed and elongated grains, of which about 60% were equiaxed grains, 40% were elongated grains, and the grain size distribution ranged from 20 nm to 150 nm. The average grain size of #24-1 sample after hot isostatic pressing at 400 (# 24-1 sample) is 176 nm, and that of # 24-2 sample after hot isostatic pressing at 325 (# 24-2 sample) is 157 nm. After hot extrusion, the average grain size of # 24-1 sample is 371 nm and that of # 24-2 sample is 322 nm. In aluminium matrix, Scherrer method, integral width method and Voigt function method are used to calculate the grain size of A15083. Because the effect of micro-strain is not taken into account, the broadening of default diffraction peak is caused by grain refinement, and the calculated grain size is generally small. The integral width method is divided into Cauchy-Cauchy, Gaussian-Gauss method. Cauchy-Cauchy method assumes that grain refinement and micro-strain are close to Cauchy distribution, and the results are larger. Gaussian-Gaussian method assumes that grain refinement and micro-strain are close to Gauss distribution, and the results are too small. The strain effect is close to the Gaussian distribution, and the calculated results are closer to the TEM statistical results, so the grain size can be calculated effectively. The calculated results of each diffraction line in Voigt function method are different, depending on the selected diffraction line. 90 MPa, 497 MPa tensile strength, 8.7% elongation after fracture. # 24-2 samples yield strength of 560 MPa, tensile strength of 566 MPa, elongation after fracture of 6.3%, strength than the traditional 5083 aluminum alloy material has been greatly improved (about 60%). Fracture analysis shows that the fracture mode belongs to microporous aggregate fracture. The results show that the strengthening mechanisms include fine grain strengthening, dispersion strengthening, solid solution strengthening and dislocation strengthening, among which fine grain strengthening and dispersion strengthening are the main ones. The yield strength and tensile strength were 469 MPa and 472 MPa respectively, which were 4.3% and 5.0% lower than those before annealing. The hardness of #24-2 sample was 138.61 HV and 3.5% lower than that before annealing. The yield strength and tensile strength were 505 MPa and 511 MPa, respectively, which were 9.8% and 9.7% lower than those before annealing. The corrosion resistance of bulk ultrafine grain Al5083 samples was studied. The results showed that the main factors affecting the corrosion resistance were passivation film on metal surface, alloy elements and grain refinement.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG146.21;TG379
【相似文献】
相关期刊论文 前10条
1 董传勇;薛克敏;李琦;李萍;;高压扭转法制备粉末块体超细晶材料[J];浙江科技学院学报;2009年03期
2 陆红亚;李付国;汪程鹏;陈波;袁战伟;;一种椭圆截面螺旋等通道挤压制备超细晶材料的新工艺[J];锻压装备与制造技术;2011年04期
3 宋宝韫;付尔聪;运新兵;贺旭东;陈莉;;连续等通道角挤压制备超细晶铜[J];有色金属;2008年04期
4 石凤健;王雷刚;芦笙;;多轴压缩工艺制备超细晶铜的研究[J];中国机械工程;2009年24期
5 王庆娟;王清平;杜忠泽;;等径弯曲通道变形制备超细晶铜的力学行为[J];特种铸造及有色合金;2011年10期
6 谈军;周张健;屈丹丹;钟铭;葛昌纯;;超细晶钨及其复合材料的研究现状[J];粉末冶金工业;2012年03期
7 薛克敏;王晓溪;李萍;;超细晶材料制备新工艺——挤扭[J];塑性工程学报;2009年05期
8 王庆娟;徐长征;郑茂盛;朱杰武;M.Buksa;L.Kunz;;等径弯曲通道制备的超细晶铜的疲劳性能[J];金属学报;2007年05期
9 杜予fE;张新明;;强变形制备超细晶金属材料的方法[J];材料导报;2006年S2期
10 代秀芝;刘靖;韩静涛;;超细晶铜带材的制备及其力学性能研究[J];南方金属;2006年06期
相关会议论文 前3条
1 杜随更;王彦绒;;超细晶材料制备的磨擦压扭强变形区转移法[A];2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集[C];2002年
2 索涛;李玉龙;谢奎;赵峰;;应变率对超细晶铜韧性的影响[A];第六届全国爆炸力学实验技术学术会议论文集[C];2010年
3 史庆南;王效琪;郑巍黎;;深度塑性加工(SPD)的进展和叠轧法(ARB)制备超细晶材料[A];中国空间科学学会空间材料专业委员会’2004学术交流会论文集[C];2004年
相关博士学位论文 前9条
1 丁然;超细晶Q&P钢的组织控制及其演变规律[D];北京科技大学;2016年
2 姜庆伟;超细晶纯金属材料塑性变形与损伤行为的温度效应[D];东北大学;2011年
3 魏伟;块体超细晶铜的制备与组织性能研究[D];南京理工大学;2005年
4 邹黎明;医用超细晶TiNbZrTaFe复合材料的粉末冶金制备及其性能研究[D];华南理工大学;2013年
5 姚再起;生物医用超细晶钛合金及其表面改性[D];大连理工大学;2010年
6 王辛;粉末冶金超细晶AZ31镁合金材料制备与力学性能研究[D];哈尔滨工业大学;2013年
7 毕见强;2A12铝块体超细晶材料的制备、模拟及细化机制的研究[D];山东大学;2005年
8 苏静;超细晶Cu的剧塑性流变行为及本构理论[D];西北工业大学;2015年
9 夏少华;微米晶/超细晶复合增塑及其机制研究[D];南京理工大学;2010年
相关硕士学位论文 前10条
1 黄小龙;粉末冶金超细晶Ti-6Al-4V合金的力学性能及变形局域化行为的研究[D];华南理工大学;2015年
2 顾阳林;复杂应力状态下超细晶材料的力学性能研究[D];南京理工大学;2015年
3 韦江涛;超细晶6061Al-Mg-Si铝合金的力学性能和摩擦磨损行为[D];江苏大学;2016年
4 牛帅隆;超细晶纯镍的热稳定性研究[D];南京理工大学;2016年
5 王晨曦;超细晶LZ91镁锂合金微压印成形工艺研究[D];哈尔滨工业大学;2016年
6 贾少伟;搅拌摩擦加工超细晶镁合金组织与性能研究[D];西安建筑科技大学;2016年
7 袁帅;考虑尺寸效应的超细晶材料晶体塑性本构建模及其有限元实现[D];广西大学;2016年
8 罗明欢;超细晶高强韧性低合金钢显微组织的形成机制[D];广西大学;2016年
9 陈菲菲;超细晶Cu-Al合金的高周疲劳性能研究[D];沈阳工业大学;2017年
10 刘志波;超细晶Al-3.8Mg合金的微观结构与力学性能研究[D];燕山大学;2016年
,本文编号:2251058
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2251058.html