2297铝锂合金热变形行为与组织性能研究
发布时间:2018-10-04 18:58
【摘要】:铝锂合金因具有较高的比强度、比刚度,以及优良的综合性能,已成为当前航空航天领域应用的热点材料。铝锂合金厚板的热变形加工技术一直是制约其发展的难题之一。本文以第三代铝锂合金2297合金为研究对象,系统研究了其热变形过程的微观组织演化规律,分析热处理工艺与合金组织性能的相关性,为铝锂合金厚板的生产和最终性能控制提供了实验基础和理论支持;对实现其实际应用具有重要意义。通过等温单道次热压缩实验,构建了能较好预测合金流变行为的本构模型。合金热变形过程动态软化机制与Z参数密切相关:当lnZ较高(lnZ51.70,T420℃),以螺位错交滑移和刃位错攀移为主要速率控制机制;当lnZ值适中(47.10lnZ≤51.70,T≥380℃),以螺位错交滑移、三维位错网络的脱缠和部分位错脱钉为主要速率控制机制,并存在部分动态再结晶;当lnZ较低(lnZ≤47.10,T≥420℃),以动态回复和动态再结晶为主要速率控制机制。基于合金流变行为,确定其动态再结晶临界条件为:εc/εp=0.294~0.657,ζc/ζp=0.885~0.990,并构建了合金动态再结晶动力学模型。通过构建热加工图优化了合金热加工范围,确定合适的热加工温度范围为400~440℃,应变速率为0.1s-1左右;安全区内合金组织演化为动态回复和动态再结晶共存,动态再结晶以连续动态再结晶机制为主,并伴随PSN机制。构建了合金动态再结晶组织演化模型:随应变量增加,原始晶粒组织→变形晶粒内形成大量亚晶组织→层状组织→三叉晶界处原始晶界局部凹陷→Y型机制迁移球化和长大→形成再结晶晶粒。系统研究了合金热变形(340~500℃)过程T1相(Al2CuLi)的动态析出与细化规律:340~460℃保温阶段有粗大T1析出,340~420℃变形阶段T1相动态析出且被明显细化,T1相细化源自两个方面:一是保温阶段析出的粗大T1相因变形被碎化和回溶;另一方面是原始晶界和变形过程引入的大量位错和亚晶界等为T1相的析出提供大量异质形核位置,导致T1的细小析出。变形温度超过460℃,未发现T1相析出。热变形过程β′相(Al3Zr)和含Mn相始终稳定存在,δ′相(Al3Li)在淬火过程即可析出。通过双/多道次热压缩实验模拟合金实际生产过程,研究发现调整不同道次的应变速率,可控制合金的再结晶程度和晶粒尺寸。多道次热变形初期组织演化以动态回复为主,变形量大于40%后合金中出现再结晶;随着变形量的增加,再结晶程度增加,动态再结晶首先在原始晶界和大尺寸第二相粒子附近产生,随后在晶粒内部产生。道次间静态再结晶会促进动态再结晶发生,不利于T1相的动态析出。结合性能测试和组织分析,系统研究了固溶时效热处理对合金组织性能的影响规律,确定合金适宜的固溶制度和T6为490℃/1.5h和175℃/48h,合金T6态抗拉强度、屈服强度和延伸率分别为447MPa、369MPa和8.9%,强化相为δ′相、θ′相和T1相。适宜的T8制度为预变形(6%)+160℃/36h,合金的抗拉强度、屈服强度和延伸率分别达到500MPa、454MPa和10.5%,强化相以T1相为主,仍存在一定数量的δ′相和θ′相;预变形量越大(≤6%),越有利于T1相细小弥散析出,合金强度呈增加趋势,延伸率呈降低趋势,当预变形量超过6%后,合金强度变化不明显。采用屈服强度各向异性指标评价分析了热轧工艺和热处理制度对合金平面各向异性的影响规律,结果表明交叉轧制和增加道次变形量均可降低合金屈服强度的各向异性。固溶淬火过程析出的δ′相会导致板材屈服强度各向异性指标增加,T6处理过程中θ′相和T1相的析出有利于降低板材屈服强度各向异性指标。T8处理时,随着预变形量的增加,T1相在惯习面不均匀分布程度增加,会导致板材屈服强度各向异性增加。研究了淬火介质参数对合金板材淬火残余应力的影响规律,随淬火水温升高或PAG溶液浓度的升高,残余应力逐渐减小。利用有限元模拟(40℃水淬火)点追踪分析板材特征点应力随时间变化的演变规律:板材芯部压应力在4.9s时转变为拉应力,15s后趋于稳定值49MPa;表层拉应力在3.4s时转变为压应力,17s后趋于稳定值-79MPa。
[Abstract]:The aluminum-lithium alloy has become a hot spot material in the aerospace field because of its high specific strength, specific rigidity and excellent comprehensive performance. Hot deformation processing technology of aluminum-lithium alloy thick plate has always been one of the difficult problems restricting its development. In this paper, the microstructure evolution law of the third generation aluminum-lithium alloy 2297 alloy was studied, and the correlation between the heat treatment process and the microstructure of the alloy was analyzed, and the experimental foundation and theoretical support were provided for the production and final performance control of the aluminum-lithium alloy thick plate. It is of great significance to realize its practical application. By means of isothermal single-pass thermal compression experiments, this model can be used to predict the rheological behavior of alloy. The dynamic softening mechanism of the alloy thermal deformation process is closely related to the Z parameter: when the ZZZ is higher (TZ51. 70, T420 鈩,
本文编号:2251507
[Abstract]:The aluminum-lithium alloy has become a hot spot material in the aerospace field because of its high specific strength, specific rigidity and excellent comprehensive performance. Hot deformation processing technology of aluminum-lithium alloy thick plate has always been one of the difficult problems restricting its development. In this paper, the microstructure evolution law of the third generation aluminum-lithium alloy 2297 alloy was studied, and the correlation between the heat treatment process and the microstructure of the alloy was analyzed, and the experimental foundation and theoretical support were provided for the production and final performance control of the aluminum-lithium alloy thick plate. It is of great significance to realize its practical application. By means of isothermal single-pass thermal compression experiments, this model can be used to predict the rheological behavior of alloy. The dynamic softening mechanism of the alloy thermal deformation process is closely related to the Z parameter: when the ZZZ is higher (TZ51. 70, T420 鈩,
本文编号:2251507
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2251507.html