镁合金杯形件径向—反向复合挤压成形数值模拟与微观组织演化研究
[Abstract]:In this paper, AZ31 magnesium alloy, which is widely studied, is selected as the research object. Different inner cavity structures (double cone channel, half circle channel, upper half cone channel) in the radial extrusion process of cup shaped parts are studied. In the lower half cone channel and flat bottom channel, the height h (1 mm / h), the angle (? = 45 掳,? 60 掳) and the billet with different height / diameter ratio (? = 1 / 2 / 2 / 4) of the shearing deformation are simulated by finite element method and the simulation results are analyzed. After determining the inner cavity structure of the upper half conical channel and the 45 掳,? = 4 die parameters, the die design, forming load calculation and forming experiment are carried out. The microstructure morphology of five typical regions of cup shaped parts obtained by radial and reverse composite extrusion is systematically analyzed, and the evolution law of microstructure in the forming process is obtained, and the tensile strength of cup shaped parts formed by extrusion is obtained. The mechanical properties such as hardness were measured, the bottom and side wall of cup were tested by EBSD, and the effect of forming process on the texture weakening of the final sidewall was analyzed. A new technology of differential extrusion is put forward in view of the shortcomings and shortcomings of the forming process. It has certain guiding significance for the production of high strength and toughness magnesium alloy cup. The results show that: (1) the maximum forming load, average equivalent strain and maximum damage value of the upper half conical channel die are moderate, and the deformation is more uniform under the conditions of the cavity structure of the upper half conical channel die and the maximum forming load under the condition of 2 mm, 伪 = 45 掳. With the increase of cone height, the average equivalent strain increases, the deformation becomes inhomogeneous and the forming load increases. Under the condition of height to diameter ratio 位 = 4, the forming load is the smallest, which conforms to the requirement of punch stiffness. (2) the yield strength and elongation of the sidewall of cup parts after radial reverse composite extrusion are only 149.6 MPA / L 17.3. The tensile strength is 285.3 MPA and the hardness is 70.91 HB.This is about 30% higher than that of the cup shaped parts formed by reverse extrusion. But both yield strength and elongation decreased. In the microstructures, the microstructures of the lateral wall show alternate distribution of coarse and fine grains. After the turning angle, the grain has no obvious preferred orientation, the diffuse property of the alloy increases, the obvious strong texture disappears, the texture strength point disappears, and distributes uniformly on the grain. The texture of the alloy is weakened. (3) the simulated pressure value is 1.48 脳 10 ~ 6K N, the upper limit method is 1.93 脳 10 ~ 6K N, and the measured pressure value is 1.63 脳 10 ~ 6K N in the actual forming experiment. Compared with the three groups of measured values, the simulated value is lower than the measured value, and the upper limit value is higher than the measured value. The error of simulation value is 8.67 and that of upper limit method is 18.4. The equivalent effect of the sidewall mouth of the cup is 2.933 calculated by the upper bound method, and the average equivalent strain of the four points picked up by the finite element simulation results is 2.895. The two values are close to each other, which verifies the accuracy of the strain calculation formula to some extent. (4) A new stepped channel structure of differential extrusion is proposed on the basis of radial reverse composite extrusion. The die structure effectively increases the number of shear stress and the equivalent strain value, which may result in mechanical crushing of coarse grain force, increase of equivalent strain and increase of dynamic recrystallization.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG146.22;TG379
【相似文献】
相关期刊论文 前10条
1 张如华;底部带凸缘的杯形件分步脱模方法及其装置(专利申请号:021435006)[J];设备管理与维修;2003年10期
2 况清连;;杯形件的锻冲结合工艺[J];锻压技术;1981年03期
3 林治平;花江;文涛;;用云纹法分析杯形件冷挤时的变形状态[J];模具技术;1986年04期
4 张宝红,张治民,张星,王强,李大旭;杯形件温引伸数值模拟[J];塑性工程学报;2004年03期
5 李长军;朱家壁;余汪洋;;盐酸维拉帕米双脉冲多相释药杯形片的研制[J];药学学报;2008年06期
6 邹崇;兰丕祥;周永宏;;杯形研具研磨阀球的工艺优化试验研究[J];机电技术;2012年05期
7 陈舜玲;杯形件拉延模的设计[J];机械开发;1998年02期
8 周艳;杯形螺母表面开裂分析[J];理化检验(物理分册);2001年06期
9 袁彩华;何文武;刘建生;;杯形件端面缺陷的有限元分析及工艺改进[J];矿山机械;2009年06期
10 姚礼之;杯形止回阀[J];建筑材料工业;1961年20期
相关博士学位论文 前2条
1 席翔;杯形波动陀螺零偏漂移机理及其抑制技术研究[D];国防科学技术大学;2014年
2 陶溢;杯形波动陀螺关键技术研究[D];国防科学技术大学;2011年
相关硕士学位论文 前10条
1 关景锐;薄壁不锈钢杯形件拉深成形质量控制研究[D];华南理工大学;2015年
2 周鑫;高灵敏度杯形振动陀螺的关键技术研究[D];国防科学技术大学;2013年
3 贾冰;AZ80镁合金杯形件反挤压成形及组织性能研究[D];哈尔滨工业大学;2016年
4 李云立;硝苯地平杯形缓释片的研制[D];河北医科大学;2013年
5 李宏;镁合金杯形件径向—反向复合挤压成形数值模拟与微观组织演化研究[D];中北大学;2017年
6 罗杜宇;杯形薄壁内齿轮旋压成形工艺分析及质量评定研究[D];华南理工大学;2009年
7 赵恒章;杯形件反挤压成形过程模拟研究[D];西安理工大学;2003年
8 魏鹏;杯形件的复合挤压技术及数值模拟[D];中北大学;2010年
9 白蕊;AZ80镁合金杯形件旋转挤压成形研究[D];中北大学;2015年
10 张勇猛;杯形陀螺的温度特性及其补偿方法研究[D];国防科学技术大学;2012年
,本文编号:2277500
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2277500.html