CMM面向形位测量任务的不确定度评定
[Abstract]:The purpose of measurement is to obtain the measured value accurately. Because of the influence of unknown system error and random error in the process of measurement, the measurement result has uncertainty. The uncertainty of measurement represents the dispersion of the measured values and is an important parameter to be included in the measurement results. Coordinate measuring machine (CMM) is an important precision measuring instrument in the field of mechanical measurement. In theory, it can be used to measure any size and geometric error conveniently and quickly. In the aspect of shape and position error measurement, although the measurement accuracy of most CMM is less than that of roundness instrument, autocollimator and other special instruments or measuring tools, it has the advantages of diversity and convenience of measuring function, so it is more widely used in the field of modern industrial manufacturing. In this paper, CMM is chosen as the research object, and the evaluation of measurement uncertainty under the task of shape and position measurement is emphatically studied. This paper focuses on solving the measurement uncertainty evaluation modeling of CMM shape and position measurement task and the quantization of each uncertainty component. A complete and universal evaluation procedure of uncertainty of CMM shape and position measurement is presented. The main research work includes: firstly, based on the thought of black-box model, the evaluation model of uncertainty of CMM shape and position measurement based on quantitative characteristic index method is proposed, and the source of uncertainty of CMM measurement is analyzed. According to the characteristics of CMM shape and position measurement and relevant theoretical basis, this paper proposes quantifying the uncertainty components of shape and position measurement task by using maximum allowable detection error (MPEP,), maximum allowable indication error (MPEE), respectively. In this paper, the evaluation of measurement uncertainty by Monte Carlo method is studied in detail. Two methods of combining the uncertainty components of Monte Carlo method and adaptive Monte Carlo method are given, and compared with the traditional GUM method. The limitation of GUM method is analyzed. Finally, CMM flatness and parallelism are selected as experimental objects. The experimental results show that the proposed method can effectively solve the measurement uncertainty evaluation problem of CMM for shape and position measurement task. Because the uncertainty component introduced by the indication error occupies the advantage in the synthesis and does not accept the normal distribution, it is more scientific and reasonable to use the Monte Carlo method to synthesize the uncertainty.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG83
【参考文献】
相关期刊论文 前10条
1 徐磊;陈晓怀;程银宝;姜瑞;李红莉;;CMM机构误差引入的空间点不确定度评定[J];电子测量与仪器学报;2016年12期
2 程银宝;陈晓怀;王汉斌;吴军;李红莉;徐磊;;CMM尺寸测量的不确定度评定模型研究[J];计量学报;2016年05期
3 方兴华;宋明顺;顾龙芳;陈意华;;基于自适应蒙特卡罗方法的测量不确定度评定[J];计量学报;2016年04期
4 苏长青;孙业翔;屈力刚;叶柏超;陈靖乐;;基于三坐标测量机的采样点数及其分布策略研究[J];中国工程机械学报;2015年06期
5 王东霞;宋爱国;;基于三坐标测量机的圆度误差不确定度评估[J];东南大学学报(自然科学版);2014年05期
6 石照耀;张斌;林家春;张华;;坐标测量技术半世纪——演变与趋势[J];北京工业大学学报;2011年05期
7 王金星;戴文静;蒋向前;;直线度与平面度坐标测量的不确定度计算[J];山东农业大学学报(自然科学版);2010年03期
8 程亮;童玲;;最大熵原理在测量数据处理中的应用[J];电子测量与仪器学报;2009年01期
9 魏超;余晓芬;;平面度误差的不确定度估计方法及取样点数量的确定[J];计测技术;2008年06期
10 王伟;宋明顺;陈意华;顾龙方;陶靖轩;;蒙特卡罗方法在复杂模型测量不确定度评定中的应用[J];仪器仪表学报;2008年07期
相关博士学位论文 前2条
1 李红莉;CMM尺寸测量不确定度模型与评定方法[D];合肥工业大学;2015年
2 邵伟;蒙特卡洛方法及在一些统计模型中的应用[D];山东大学;2012年
相关硕士学位论文 前3条
1 杨桥;CMM测量策略分析与不确定度评定[D];合肥工业大学;2014年
2 董兆鹏;蒙特卡罗法在圆度误差提取点数确定问题中的应用[D];华侨大学;2012年
3 连慧芳;形位误差测量的不确定度评定[D];合肥工业大学;2010年
,本文编号:2280024
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2280024.html