高强钢热成形局部硬化成形实验与温度场模拟
[Abstract]:The automobile industry has always been faced with safety, energy-saving, environmental protection and other issues. The use of high-strength steel has become a major turning point in the automotive industry. At present, the development of automobile industry emphasizes light weight and high strength, which not only means that some parts need to be thickened, but also need to ensure that the parts meet the requirements of collision energy absorption and maximize the safety of passengers. The proportion of high strength steel stamping parts used in automobile is increasing, and the demand for local hardening of hot forming of high strength steel is becoming more and more urgent. The research involves setting different cooling forms inside the forming die to control the cooling rate in sheet metal forming process. The sheet metal is in contact with the die surface, and the heat transfer is carried out during the forming and holding stage, so we can indirectly control the cooling rate of the sheet metal according to the continuous cooling transformation curve of the high strength steel and by controlling the temperature of the die. Local hardening is realized. In this paper, the cold-rolled B1500HS steel sheet is used as the original stamping material and the forming die material is H13 hot working die steel. A set of local hardening forming die is designed and verified by hot forming experiment and finite element simulation. The main contents of this paper are as follows: (1) through the continuous optimization of the hot forming local hardening experimental die, the experimental model of the local hardening forming is determined, and the assembly of the die and the selection of the experimental equipment are completed according to the existing experimental conditions. The temperature of the die was recorded and the curve was drawn. The conclusion was drawn by analyzing the continuous cooling transformation curve of high strength steel that the martensite transformation degree of the sheet metal could be reduced by heating the mould to reduce the cooling rate of the sheet metal. The bainite structure with good toughness can be obtained and the martensite structure with high strength can be obtained by controlling the heating rate of the mould by air cooling. The influence of die temperature in cooling zone and mold temperature in heating zone can be reduced by the method of mould prefabrication clearance, and the controllability of local strength of sheet metal can be improved. (2) stamping parts can be obtained by different experimental conditions. The mechanical properties and microstructure were measured by sampling at a specific position, and the strength, hardness and content of microstructure were compared and analyzed. It was concluded that most martensite structures were obtained in the cooling zone and transition zone. The fracture mode of the cooling zone is brittle fracture, the fracture surface is even, the tensile strength is up to 1 400 Mpaand the hardness is up to 460 HV.The content of martensite in the heating zone decreases gradually with the increase of heating temperature, and the content of bainite and ferrite increases gradually. The fracture surface is cup cone, tensile strength is reduced from 1185.98Mpa to 620.44MPA, hardness is reduced from 397HV to 210HVH, hardness is reduced by 47mm, the properties of U-shaped bottom and side wall are distributed, local hardening forming sheet metal cooling zone, transition zone, and so on, the material is broken in ductile fracture mode, and the tensile strength is reduced from 1185.98Mpa to 620.44 MPA, and the hardness is reduced from 397HV to 210 HVV. The mechanical properties and microstructure content of the heating zone are gradient. (3) for the heating zone, a two-dimensional plane U-shaped stamping model is established in ABAQUS, and the effects of different holding time and die heating temperature on the hot stamping sheet metal are analyzed. The mold temperature field, sheet metal temperature field and stress field are obtained. For the cooling zone, a three-dimensional U-shaped stamping model is established in Fluent to analyze the effect of air flow velocity on the hot forming sheet, and the temperature field of the die and sheet metal is obtained. On the basis of continuous cooling transformation curve of high strength steel, the following conclusions are obtained: the best holding time is 10 s during hot stamping, and the degree of martensite transformation can be reduced by heating die. When the air velocity in the mould is higher than a certain velocity, the perfect martensite structure can be obtained, and the optimum air flow velocity is 6 m / s.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG306
【相似文献】
相关期刊论文 前10条
1 王存宇;时捷;惠卫军;陈鹰;张英建;董瀚;;提高热成形钢塑性的工艺研究[J];锻压技术;2011年02期
2 韩风麟;汽车用热成形粉末冶金零件[J];机械工程材料;1979年03期
3 张巧丽,温建盛,陆宝臣;护环钢热成形微观机制的模拟研究[J];铸造设备研究;2000年01期
4 吴鹏翔 ,段海华;钛合金封头的热成形[J];机械工人(热加工);2004年10期
5 ;蒂森克虏伯采用新技术提高热成形效率[J];鞍钢技术;2013年05期
6 杨伟俊;李东升;李小强;李杨;;复杂形状钛合金热成形零件工艺仿真及参数优化研究[J];塑性工程学报;2009年01期
7 黄鉴;何东升;马业华;冯斌;魏秦文;;数值模拟技术在三通热成形工艺中的应用[J];热加工工艺;2011年03期
8 崔大江;陈孝福;;2024和7075铝合金的加热成形[J];航空工艺技术;1983年09期
9 张巧丽,尤嘉,郭会光,陆宝臣;35CrMo曲轴热成形材料模型的研究[J];太原重型机械学院学报;1999年04期
10 张成武,苏小军,王世生;同步二层热成形法[J];化学工程师;2000年01期
相关会议论文 前9条
1 田志强;;热成形钢与热成形技术的应用及发展现状[A];第十四届中国科协年会第8分会场:钢材深加工研讨会论文集[C];2012年
2 李光瀛;;热成形处理在深加工技术中的应用与发展[A];2014年全国钢材深加工研讨会论文集[C];2014年
3 杨宇卫;赵镇波;;封头热成形和热处理对于复合钢板组织和力学性能的影响[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年
4 郭会光;刘建生;陈慧琴;杨超操;;Mn18Cr18N钢护环热成形新工艺数值模拟的研究[A];第三届华北塑性加工学术会议论文集[C];2004年
5 路洪洲;Bian Jian;王文军;郭爱民;;基于汽车安全的热冲压成形技术优化[A];面向未来的汽车与交通——2013中国汽车工程学会年会论文集精选[C];2013年
6 杨宏;熊本胜;高强;杨伟;赫立远;;某公司车型热成形技术的应用[A];面向未来的汽车与交通——2013中国汽车工程学会年会论文集精选[C];2013年
7 杨宏;熊本胜;高强;杨伟;赫立远;;某公司车型热成形技术的应用[A];2013中国汽车工程学会年会论文集[C];2013年
8 侯本来;;7075型材热成形下陷技术研究[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
9 许章泽;安涛;;马钢第三条辗钢车轮生产线及其工艺技术水平分析[A];实践 开拓 创新——2008年快速重载车辆转向架与轮轴学术研讨会论文汇编[C];2008年
相关重要报纸文章 前2条
1 路洪洲译;新热成形钢合金成分的创新设计[N];世界金属导报;2013年
2 新汶;“支气管热成形术”进入临床试验阶段[N];医药经济报;2006年
相关博士学位论文 前9条
1 尚欣;车身复杂结构件用超高强度钢双热成形关键技术研究[D];重庆大学;2015年
2 刘培星;高性能金属板料汽车结构件热成形及切割工艺研究[D];华中科技大学;2016年
3 张杰;超高强度热成形钢镀层组织和性能研究[D];东北大学;2014年
4 马宁;高强度钢板热成形技术若干研究[D];大连理工大学;2011年
5 张杰;超高强度热成形钢镀层组织和性能研究[D];钢铁研究总院;2014年
6 王超;高强钢热成形接触导热和零件力学性能及工艺优化研究[D];华中科技大学;2014年
7 曹捚汇;高聚物板材三维曲面的多点热成形研究[D];吉林大学;2014年
8 石永军;激光热变形机理及复杂曲面板材热成形工艺规划研究[D];上海交通大学;2007年
9 刘凯;高强度汽车钢的热机械性能与相变研究以及典型汽车零件的热成形制造[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 王刚;高强度不锈钢螺旋桨热成形微观结构与性能的研究[D];集美大学;2015年
2 王成林;淬火—配分工艺强韧化热成形钢的研究[D];上海交通大学;2015年
3 赵淘;钛合金波纹管快速热成形技术[D];哈尔滨工业大学;2015年
4 魏裕君;铝合金轻量化壁板的激光诱导热成形研究[D];哈尔滨工业大学;2015年
5 余洋;热成形高强钢板及部件梯度力学性能研究[D];大连理工大学;2015年
6 张金女;热成形微观组织预测及S形梁模具分区冷却热成形技术研究[D];大连理工大学;2015年
7 武江涛;电磁力辅助铝板线加热成形的关键技术研究[D];大连理工大学;2015年
8 刘霞;车用超高强度热成形硼钢激光焊接组织性能研究[D];石家庄铁道大学;2014年
9 刘才溢;变梯度特性热成形技术基础研究[D];燕山大学;2015年
10 王辰m,
本文编号:2285286
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2285286.html