AZ31镁合金宽应变率下各向异性力学行为及形变机制研究
[Abstract]:As a lightweight structural material, magnesium alloy has a wide application prospect in automobile and aviation. However, the strong anisotropy in the room temperature environment limits the wide application of magnesium alloys. In order to overcome this shortcoming, many scholars have carried out a lot of research on macroscopic mechanical behavior and microstructure evolution, but how microstructure evolution affects the macroscopic mechanical behavior of magnesium alloy is still unclear, and lack of micro-scale measurement of macroscopic and microscopic deformation. There is no consensus on the reasons for the anisotropy deformation of magnesium alloys. In this paper, the anisotropic deformation of magnesium alloy under different strain rate is studied by using in-situ real-time synchronous radiation X-ray phase contrast imaging and diffraction multi-scale measurement method. In the process of deformation of magnesium alloy, the macroscopic stress relaxation strain curve, micro-strain field and micro-diffraction pattern are simultaneously acquired. The results show that the stress relaxation strain curve, strain field and diffraction pattern evolution of the specimen under quasi-static compression loading, strain rate 5X0-4s-1, LA-c and LA-c in room temperature environment show significant difference. For LA-c samples, {1012} tensile twinning dominant plastic deformation, the stress gradient is rapidly released by twinning and the strain field becomes uniformized, and the decrease in strain localization degree effectively stimulates the increase of strain hardening rate. However, the plastic deformation in LA-c samples depends mainly on dislocation movement, dislocation is at the defect and entanglement causes strain concentration, and meso-non-uniform deformation results in a decrease of strain hardening rate. The quasi-static compressive loading and strain rate of 10-3s-1 and the macroscopic mechanical properties of magnesium alloy in high-temperature environment are studied. The micro-strain field and the micro-lattice deformation show obvious anisotropy. Due to the difference in the initial texture, the {1012} tensile uniaxial crystals dominate the plastic deformation of the LA-c samples at room temperature and high temperature, while dislocation movements are more prevalent in the LA-c samples. As the temperature increases, the number of {1012} tensile microcrystals excited in the LA-c sample is gradually decreased so that the degree of homogenization of the strain field is reduced; at high temperatures, the {1122} c + a cone slip in the LA-c sample is easier to start, so that the LA-c samples exhibit more uniform deformation at high temperatures. The {1012} tensile stressor and the cone c + aa slip can uniformize the plastic deformation by coordinating the vertical and the deformation parallel to the loading direction. The difference of non-uniformity of strain field results in a significant difference in strain hardening rate of LA-c and LA-c samples. 3. Split Hopkinson pressure rod is loaded with a strain rate of about 5. 5-103 s-1. The dynamic response of magnesium alloy is similar to quasi-static loading. The increase of strain hardening rate is effectively excited by the decrease of the degree of localization of the strain field and the decrease of strain hardening rate due to the increase of the non-uniform deformation of the strain field and the increase of the non-uniformity of the strain field. However, during the initial stage of plastic deformation, the twin dominant plastic deformation during dynamic loading, while the dominant plastic deformation under quasi-static loading is dislocation movement, indicating that the loading strain rate affects the deformation mode of magnesium alloy to some extent. The elastic-plastic transition of the strain rate of 0. 92 ~ 1. 35-0105s-1LA-c and LA-c-c samples showed obvious anisotropy, but the elastic limit was about 0.32GPa. When the impact velocity increases, the crack intensity increases with the increase of the impact velocity, and the difference is reduced; when the impact velocity increases to 400 m/ s, The fracture strength of LA-c and LA-c samples was consistent. A large number of {1012} tensile microcrystals were formed in the LA-c samples, and the number of crystals in LA-c samples was small.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TG146.22
【相似文献】
相关期刊论文 前10条
1 杜贤昌;郭淑兰;董文;徐学东;;AZ31B镁合金A-TIG单一活性剂的设计与研究[J];热加工工艺;2014年09期
2 杜九汪;王强;;AZ80镁合金带内筋薄壁壳体挤压新方法[J];轻合金加工技术;2014年05期
3 刘蒙恩;白莉;袁苗达;樊艳丽;;AZ31镁合金/AgCu合金/5083铝合金TLP扩散焊研究[J];热加工工艺;2014年09期
4 郑坚,,孙成友;关于材料的应变率敏感效应[J];力学与实践;1996年03期
5 刘晓辉;张茹;刘建锋;;不同应变率下煤岩冲击动力试验研究[J];煤炭学报;2012年09期
6 张万静;;用优良的比率试验机对钛6-6-2进行高应变率试验[J];工程与试验;1977年Z1期
7 李正升,郑芝兰,王培兴,张关云;低碳锰铌钢的热加工性能[J];金属学报;1985年01期
8 夏源明;袁建明;杨报昌;;纤维应变率相关的统计本构模型的理论与实验研究[J];复合材料学报;1993年02期
9 包合胜;卢维娴;董新龙;王礼立;;铸镁合金ZM_5-T_4本构特性的宏观与微观研究[J];宁波大学学报(理工版);1991年01期
10 张作梅,赵士达;不同温度、速度条件下,G3、1Cr13钢、铝、铅等塑性变形抗力的研究[J];金属学报;1963年02期
相关会议论文 前10条
1 穆玉明;米也赛尔·阿不都热依木;韩伟;古丽齐满·霍加阿不都拉;;肥厚型心肌病左房收缩和舒张功能的应变率显像研究[A];第九届全国超声心动图学术会议论文集[C];2007年
2 庞利;金红;王惠;李欣;陈旭;周振芳;;应用应变率及实时三维超声技术评价急性病毒性心肌炎患儿左心功能的研究[A];中国超声医学工程学会第九届全国腹部超声医学学术会议论文汇编[C];2012年
3 庞利;金红;王惠;李欣;陈旭;周振芳;;应用应变率及实时三维超声技术评价急性病毒性心肌炎患儿左心功能的研究[A];中华医学会第十三次全国超声医学学术会议论文汇编[C];2013年
4 夏志超;杨龙;隋欣;李世鹏;王宁飞;;中应变率(10~1s~(-1)量级)设备介绍及存在问题分析[A];北京力学会第20届学术年会论文集[C];2014年
5 吴田;郭瑞强;陈金玲;周青;;应变率显像评价冠心病患者左室功能[A];第九届全国超声心动图学术会议论文集[C];2007年
6 高继康;郑哲岚;戴晓艇;曹昕阳;郑凤华;;定量组织速度显像和应变率显像对肺心病右室壁舒张功能的研究[A];2008年浙江省超声医学学术年会论文汇编[C];2008年
7 阮雯;孙寅光;徐怡琼;赵勤华;张凤如;沈卫峰;;二维应变率显像评价慢性收缩性左心功能不全患者心房功能[A];第九届全国超声心动图学术会议论文集[C];2007年
8 吴田;郭瑞强;周青;陈金玲;;应变率显像评价高血压和冠心病患者左室心肌功能[A];第九届全国超声心动图学术会议论文集[C];2007年
9 戚承志;钱七虎;;岩石等脆性材料动力强度依赖应变率的物理机制[A];钱七虎院士论文选集[C];2007年
10 夏s
本文编号:2290059
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2290059.html