X70钢高压干法GMAW直流正接焊接工艺研究
[Abstract]:China has abundant offshore oil and natural gas resources, including 24 billion tons of offshore oil and 140 trillion cubic meters of natural gas resources. A large number of offshore engineering and submarine pipeline construction put forward higher requirements for the performance of submarine pipeline steel. In recent years, X70 high strength steel has been widely used in domestic submarine pipeline construction, but little research has been done on the maintenance and repair of existing X70 submarine pipeline steel. Underwater high pressure dry GMAW welding technology is the key technology of underwater equipment maintenance, such as ship, offshore platform, submarine pipeline and so on. The high pressure GMAW welding technology of X70 steel will be studied in this paper. The high pressure chamber simulation 0.8-2MPa environment pressure, the X70 steel high pressure GMAW welding process will be studied. Combined with the existing high pressure GMAW welding characteristics, reasonable process experiments were designed and surfacing experiments were carried out on the flat plate to study the effects of power polarity, environmental pressure and welding process parameters on the stability, droplet transfer and weld formation of the welding process. The general range of process parameters which can ensure the stability of welding process under different ambient pressures is obtained. The influence of environmental pressure and process parameters on welding process is summarized, which provides guidance for high pressure GMAW welding of X70 steel. Considering the practical application scenario of X70 submarine pipeline steel, combined with the characteristics of X70 pipeline steel welding and multi-layer multi-pass welding under atmospheric pressure, the multi-layer and multi-pass welding process of X70 steel was studied and tested. The reasonable range of process parameters was calculated. On the basis of this, combined with the rules of high pressure GMAW welding obtained from surfacing welding, the multi-layer and multi-pass welding test of X70 steel was carried out. The macroscopic metallography, microstructure, hardness, impact energy and tensile strength of welded joints were analyzed and summarized. The high pressure GMAW welding process of X70 steel was obtained, and the existing welding process was optimized. The experimental results show that, unlike GMAW welding of X70 steel under atmospheric pressure, the range of process parameters for maintaining the stability of welding process at high pressure becomes narrower. With the increase of environmental pressure, droplet transfer form gradually changed from short-circuit transition to repellent transition, and spatter gradually increased. Increasing welding torch swing can effectively reduce welding leakage and edge cutting. The main microstructure of high pressure GMAW welded joint of X70 steel is acicular ferrite, preeutectoid ferrite and a small amount of upper bainite. The hardness of X70 steel high pressure GMAW welding joint has little change. The microstructure and mechanical properties of the heat affected zone, especially the superheated zone, differ greatly. The superheated zone is composed of coarse martensite structure or fine and uniform pearlite and bainite. Under high pressure, the weld width becomes narrower, the penetration depth becomes deeper, the amount of coarse martensite in the heat affected zone increases and the impact energy decreases. Properly increasing the welding voltage, feeding wire speed and reducing welding speed can effectively increase the tensile strength, impact power and reduce the hardness of the welded joint.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG457.11
【相似文献】
相关期刊论文 前10条
1 宋柱梅;李迪;叶峰;;A study on the application of ICA to GMAW[J];China Welding;2006年02期
2 闫志鸿;张广军;高洪明;吴林;;Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW[J];China Welding;2006年02期
3 ;Mechanism of Metal Transfer in DE-GMAW[J];Journal of Materials Science & Technology;2009年03期
4 曾敏,曹彪,黄石生,蒙永民,毛鹏军;微机控制逆变GMAW_P焊系统的研究[J];华南理工大学学报(自然科学版);2003年01期
5 孙广,何建萍,张春波,白日辉,吴毅雄;参数可调多斜率波控GMAW[J];焊接学报;2005年03期
6 雷玉成,郁雯霞,李彩辉,张成,程晓农;GMAW温度场计算及其焊接质量的特征建模[J];江苏大学学报(自然科学版);2005年03期
7 吕小青;曹彪;曾敏;黄增好;;Effects of current waveform parameters during droplet transfer on spatter in high speed waveform controlled Short-circuiting GMAW彐[J];China Welding;2005年02期
8 马跃洲;马文斌;瞿敏;陈剑虹;;Characteristics analyzing and parametric modeling of the arc sound in CO_2 GMAW for on-line quality monitoring[J];China Welding;2006年02期
9 尹力;洪波;屈岳波;李安强;龚海;周文军;;旋转电弧脉冲GMAW焊的信号处理[J];焊接技术;2006年06期
10 闫志鸿;吴林;张广军;高洪明;;Neural network modeling for weld shape process of P-GMAW[J];China Welding;2007年01期
相关会议论文 前10条
1 丁文斌;刘维;张姝妍;;Effect of Microstructure on Mechanical Properties for Pulsed GMAW of 5083 Aluminum Alloy in LNG Cryogenic Storage Tanks[A];2009年度海洋工程学术会议论文集(下册)[C];2009年
2 徐晨明;陈善本;;基于图象法的脉冲GMAW熔宽控制[A];第十次全国焊接会议论文集(第2册)[C];2001年
3 雷玉成;郁雯霞;李彩辉;张成;;GMAW温度场计算及其焊接质量的特征建模[A];第十一次全国焊接会议论文集(第2册)[C];2005年
4 宋柱梅;李迪;叶峰;;独立元分析在GMAW中的应用研究[A];第十一次全国焊接会议论文集(第2册)[C];2005年
5 武传松;胡庆贤;孙俊生;;基于电参数模糊特征的GMAW焊接过程监测[A];第十次全国焊接会议论文集(第2册)[C];2001年
6 殷树言;陈树君;刘嘉;黄鹏飞;;基于新型控制法的逆变GMAW工艺特点[A];石油工程焊接技术交流及焊接设备焊接材料应用研讨会论文专刊[C];2004年
7 马跃洲;瞿敏;陈剑虹;;GMAW电弧声参数化模型及模式识别应用[A];第十一次全国焊接会议论文集(第2册)[C];2005年
8 高进强;武传松;冯天涛;;GMAW焊焊枪对中信息及根部间隙的视觉检测[A];第十一次全国焊接会议论文集(第2册)[C];2005年
9 胡庆贤;武传松;;基于7维统计矢量的GMAW焊接过程监测FCM系统[A];第十一次全国焊接会议论文集(第2册)[C];2005年
10 耿正;;GMAW引弧过程的研究[A];第十一次全国焊接会议论文集(第2册)[C];2005年
相关重要报纸文章 前1条
1 ;X80输气管线的开发与生产[N];世界金属导报;2002年
相关博士学位论文 前10条
1 张旺;CO_2激光+脉冲GMAW复合焊接等离子体行为及熔滴过渡控制研究[D];上海交通大学;2014年
2 韦辉亮;激光-GMAW复合焊接低合金钢数值模拟与试验研究[D];天津大学;2014年
3 王璐璐;铝合金P-GMAW电弧—熔池多因素耦合行为及机制[D];上海交通大学;2015年
4 郭波;基于宽动态视觉传感的GMAW机器人焊接偏差实时识别及电弧监测研究[D];华南理工大学;2016年
5 陈姬;高速GMAW驼峰焊道形成机理的研究[D];山东大学;2009年
6 薛诚;旁路耦合电弧GMAW工艺及机理研究[D];兰州理工大学;2011年
7 刘安华;高低频脉冲耦合振荡对铝合金DP-GMAW焊缝成形的影响机制研究[D];上海交通大学;2014年
8 王瑞超;软开关脉冲GMAW焊接电源及弧长稳定性研究[D];华南理工大学;2012年
9 李芳;GMAW-P数字电源设计及熔滴过渡特征信号提取与建模研究[D];上海交通大学;2008年
10 冯杰才;高强钢厚板激光-GMAW复合双面同步横焊特性研究[D];哈尔滨工业大学;2014年
相关硕士学位论文 前10条
1 张皓庭;激光+GMAW复合热源焊接熔池与小孔动态行为的数值模拟[D];山东大学;2015年
2 陈东升;双丝P-GMAW电弧复合机理及焊缝成形影响因素研究[D];山东大学;2015年
3 李琰;用于调控高速GMAW熔池后向液体流的外加电磁场数值分析[D];山东大学;2015年
4 巩金昊;窄间隙双丝非共熔池GMAW熔池行为研究[D];哈尔滨工业大学;2015年
5 吕明达;GMAW熔池网格结构光三维视觉传感[D];哈尔滨工业大学;2015年
6 张卫卫;激光+GMAW复合热源焊焊缝缺陷机理研究[D];江苏科技大学;2015年
7 张朝阳;基于ANSYS的AZ31B DE-GMAW数值模拟[D];南昌大学;2015年
8 聂军;AZ31B镁合金非熔化极DE-GMAW焊缝成形研究[D];南昌大学;2015年
9 张菁;双丝GMAW电弧干扰及焊接工艺研究[D];上海交通大学;2015年
10 吴东升;高速GMAW驼峰形成及双丝焊抑制机理研究[D];上海交通大学;2015年
,本文编号:2342103
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2342103.html