Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究
[Abstract]:Magnetron sputtering stainless steel nanocrystalline films have better corrosion resistance than coarse-grained materials of the same composition. It was found that the surface nanocrystalline of Cr could promote the enrichment of Cr in the passivation film and inhibit the surface adsorption of Cl-, but the microcosmic and essential mechanism of the nanocrystalline reaction was not clear. In this thesis, Fe-Cr alloy, a model alloy system of stainless steel, was used to passivate the sputtering nanocrystalline thin films by traditional electrochemical measurement, surface analysis and first-principle calculation. The surface adsorption and transport behavior of Cl- in the passivation film were studied. The effect of nanocrystalline on the corrosion behavior of Fe-Cr alloy is discussed. The results of ARXPS surface analysis show that, The passivation films formed on the surface of coarse-grained Fe-20Cr alloys and nano-crystalline films deposited in 0.15 MB (OH) _ 3 0.075M Na2B4O7 10H2O (pH8.6) buffer solution have hydrated layers with outer hydroxides and oxygen as inner layers. The double layer structure of the chemical layer. Compared with coarse-grained alloy, the Cr content in the passivation film and the passivation film / metal interface on the nanocrystalline surface is higher than that in the coarse crystal alloy, that is, the nanocrystalline content is favorable to the enrichment of Cr in the interface and the passivation film. The theoretical calculation was carried out by the first principle, and the Fe/FeO interface was set up, and the theoretical models of the interface and the passivation film were simulated by Fe12O18 unit cell, respectively. The results showed that the passive film / metal interface was the stable position of the Cr element. And the passivation film is more stable with the increase of Cr content. The analysis of PDM model revealed that nanocrystalline promoted the enrichment of Cr elements by accelerating the dissolution of Fe and the diffusion of vacancies, especially in the interfacial layer. The results show that the content of Cr in Fe-Cr alloy (Fe-lOCr, Fe-20Cr.) is less than 30%. Fe-30Cr) after soaking 5min in HCl NaCl (pH=2, [Cr-] = 0.1M solution, the amount of Cl- adsorbed on the metal surface increased with the increase of Cr content. When the content of Cr is 50% and 75%, it is easier for the metal surface to form a passivation film dominated by the oxide of Cr, thus preventing the adsorption of Cl-. The interface model of Cl-/Fe was constructed by first-principle calculation method, and the most stable position of Cl- adsorbed on metal surface was found. Cr was used to replace the Fe, at the interface. Then the adsorption energy of Cl- and the adsorption distance of Cl- on the surface of Cl- were calculated theoretically. The results show that the adsorption energy and distance of Cl- decrease with the increase of the content of Cr at the interface of the alloy. In addition, from the electronic point of view, the structure of metal valence electrons is closely related to the adsorption of Cl-. Because the element of Cr has more 3D empty orbitals, it has stronger hybrid ability with Cl- and is easy to adsorb Cl-. The theoretical results are in good agreement with the UPS test results. The experimental phenomenon that the adsorption amount of Cl- increases with the increase of Cr content is explained. The transport behavior of Cl- in the passivation film was studied. The results show that in the acidic solution of HCl NaCl (pH=2, [Cr-] = 0.1M, nanocrystalline film inhibits the adsorption of O and Cl-, and accelerates the formation of passivation film. The nanocrystalline concentration of Cr element in the inner layer of passivation film is favorable. First-principle calculations show that oxygen vacancies are most stable at the Fe/FeO interface, and nanocrystals are conducive to the generation of vacancies at the interface. Because of the enrichment of Cr in the passivation film, the diffusion process of Cl- from the passivation film to the interface of the metal / passivation film becomes difficult, and the nanocrystalline is not conducive to the entry and transport of Cl-. The thermodynamic and electronic results of the first principle calculation and UPS experiments were used to explain the experimental results of the nanocrystalline passivation and corrosion resistance of Fe-20Cr alloys.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG174.4
【相似文献】
相关期刊论文 前10条
1 张向超;杨华明;陶秋芬;;TiO_2基纳米材料第一性原理计算模拟的研究进展[J];材料工程;2008年01期
2 周晓龙;冯晶;曹建春;陈敬超;孙加林;杜晔平;于杰;杜焰;杨宁;;Ag/CuO复合材料界面稳定性的第一性原理计算[J];中国有色金属学报;2008年12期
3 张启周;杨晓翠;张立新;李宝文;朱秀云;王晓明;;高压下SrS结构转变的第一性原理计算[J];白城师范学院学报;2009年03期
4 周明林;商信华;;压力对TiN结构和弹性影响的第一性原理计算[J];江西师范大学学报(自然科学版);2011年03期
5 张天然;李岱昕;杨思七;陶占良;陈军;;第一性原理计算在锂离子电池负极材料中的应用[J];电化学;2012年03期
6 贾伟;王进;韩培德;党随虎;迟美;刘旭光;许并社;;AlN(10-10)表面结构的第一性原理计算[J];材料导报;2007年06期
7 万小波;唐昶环;杜凯;张林;王妮;胡文成;;电沉积铁层晶体结构变化的第一性原理计算[J];强激光与粒子束;2012年06期
8 常景;周晓林;武晓龙;;高压下固相硝基甲烷光学性质的第一性原理计算(英文)[J];四川大学学报(自然科学版);2013年05期
9 张铭,申江,何家文;TiN晶体弹性常数的第一性原理计算[J];兵器材料科学与工程;2000年05期
10 邵秀琴,朱俊,赵伟;用第一性原理计算硅单空位缺陷[J];武汉科技学院学报;2001年03期
相关会议论文 前10条
1 吴忠庆;Renata Wentzcovitch;;高温高压弹性的第一性原理计算新方法及应用[A];中国地球物理学会第二十七届年会论文集[C];2011年
2 赵丽军;张小超;樊彩梅;贾金田;梁镇海;韩培德;;纳米钛酸镍材料结构模拟及第一性原理计算[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
3 罗晓光;李金平;张幸红;韩杰才;董善亮;;第一性原理计算氯化钠型过渡金属硼化物的弹性性质[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 陈灏;蒋锋;周永西;梁云烨;R.Note;H.Mizuseki;Y.Kawazoe;;分子电子学和第一性原理计算(英文)[A];量子电荷和自旋输运研讨会论文集[C];2005年
5 董锦明;翁红明;Y.Kawazoe;T.Fukumura;M.Kawasaki;;磁光效应和材料磁光性质的第一性原理计算[A];量子电荷和自旋输运研讨会论文集[C];2005年
6 秦敬玉;厉瑞艳;杨磊;;基于逆蒙特卡罗和第一性原理计算联合的Fe-B-Si非晶结构分析[A];第三届散裂中子源多学科应用研讨会论文集[C];2006年
7 姚超;吴忠庆;;第一性原理计算高温高压下Magnesite的状态方程、弹性、波速和密度[A];2014年中国地球科学联合学术年会——专题11:深部高压结构、过程及地球物理响应论文集[C];2014年
8 张乔丽;袁大庆;张焕乔;范平;左翼;郑永男;K.Masuta;M.Fukuda;M.Mihara;T.Minamisono;A.Kitagawa;朱升云;;P在α-Al_2O_3中电场梯度的第一性原理计算[A];第十四届全国核结构大会暨第十次全国核结构专题讨论会论文摘要[C];2012年
9 侯士敏;;纳电子器件电学特性的第一性原理计算[A];2005年纳米和表面科学与技术全国会议论文摘要集[C];2005年
10 赵宪庚;;院长致辞[A];中国工程物理研究院科技年报(2012年版)[C];2012年
相关博士学位论文 前10条
1 蒋好;铁基超导体的晶体化学以及第一性原理计算并辅助探索新型超导材料[D];浙江大学;2015年
2 朱慧平;半导体中缺陷及电子特性的第一性原理研究[D];南京大学;2015年
3 黄世娟;正电子理论计算及其在分析材料微结构中的应用[D];中国科学技术大学;2015年
4 戴足阳;高分辨小分子光谱计算研究[D];清华大学;2014年
5 胡麟;一些二维材料的第一性原理计算与设计[D];中国科学技术大学;2016年
6 张滨;Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究[D];大连理工大学;2016年
7 杨军;导电性超硬材料的第一性原理计算研究[D];上海交通大学;2011年
8 何建平;钛酸锶钡结构及其极化特性的第一性原理计算与实验研究[D];华中科技大学;2012年
9 冯页新;二维碳基材料的催化特性和生长:第一性原理计算研究[D];南开大学;2013年
10 孙博;金属表面与原子/分子相互作用的第一性原理计算研究[D];中国工程物理研究院;2009年
相关硕士学位论文 前10条
1 邱烨;用第一性原理计算研究M_3AX_2相材料的点缺陷[D];兰州大学;2015年
2 李婷婷;铍和氧化铍电子、弹性性质的第一性原理计算[D];宁夏大学;2015年
3 陈浩;压力场中锗光学性质的第一性原理计算与实验分析[D];武汉理工大学;2015年
4 李小波;钇稳定氧化锆空位型缺陷的第一性原理计算[D];湖南师范大学;2015年
5 彭思雯;Mg-Zn系镁合金第一性原理计算[D];沈阳工业大学;2016年
6 崔莉;VN/TiN体系的修正嵌入原子相互作用势函数的研究[D];重庆大学;2015年
7 周,
本文编号:2344517
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2344517.html