SECM对7075铝合金在NaCl溶液中的电化学腐蚀行为研究
[Abstract]:Aluminum and aluminum alloys have the advantages of low density, good conductivity and thermal conductivity, so they are widely used in industry. In this paper, 7075 aluminum alloy is used as the research material, which is a new type of aluminum material in aerospace industry and ship industry. However, the service environment of aircraft and ships in coastal areas is complex and changeable, and the presence of chlorine ions in sea water is a great threat to metal materials. Therefore, the corrosion mechanism of 7075 aluminum alloy in marine environment is studied in this paper. The results are as follows: by studying the effect of salinity on corrosion resistance of 7075 aluminum alloy, the corrosion mechanism of 7075 aluminum alloy is obtained. The corrosion potential shifted positively, the dispersion index decreased, the surface roughness of the electrode increased, and the corrosion resistance decreased. The OH- of Al (OH) 3, a corrosion product of Cl-,7075 aluminum alloy with strong activation in NaCl solution, was gradually replaced by Cl-. The oxide film on the surface of the alloy is continuously damaged, and a new corrosion product, AlCl3, is formed. The corrosion resistance of 7075 aluminum alloy under different pH values was studied by adjusting pH value of 7075 aluminum alloy in 0. 6 mol/LNaCl solution at room temperature by HCl and NaOH. The results showed that the charge transfer resistance of pH3~7, was increased and the charge transfer was blocked. The stability of the oxide film on the surface of pH9~11, electrode is decreased, the dissolution process of the barrier layer is accelerated, and the corrosion rate is increased from 0.0914 mm/a to 2.122 mm / a. In the strong acid solution, the inductive arc is obvious in the electrochemical impedance spectrum, and there is inhomogeneous pitting corrosion. At pH=7, 9, there is only one capacitive arc in the electrochemical impedance spectrum, which is the dissolution process of aluminum alloy matrix. PH= 11:00, The electrochemical corrosion behavior of 7075 aluminum alloy has two processes: the formation of barrier layer adhesion process and the barrier layer dissolution reaction process. On the basis of scanning electron microscope (SEM), scanning electrochemical microscope (SECM) was used to observe the surface morphology of 7075 aluminum alloy immersed in 0.6 mol/LNaCl solution by scanning electrochemical microscope (SECM). The results show that the corrosion of 7075 aluminum alloy is mainly pitting corrosion at the beginning of soaking, the immersion time is prolonged, the metal matrix dissolves gradually, the concentration of Al3 in the solution increases, the surface of the alloy appears small pits, the distribution of the pits is sparse, and the layered structure of the surface disappears. In 0. 6 mol/LNaCl solution, the corrosion potential of ZnAl phase and ZnAlMg phase in 7075 aluminum alloy is higher. The corrosion microelectrolysis cell is formed with the substrate as cathode, and the aluminum substrate with lower corrosion potential is used as anode, which leads to the dissolution of aluminum anode around ZnAl phase and ZnAlMg phase.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG178
【参考文献】
中国期刊全文数据库 前10条
1 齐忠原;巫瑞智;王国军;王强;侯乐干;;铝合金在船舶和海洋工程中的应用[J];轻合金加工技术;2016年01期
2 李广宇;张芒芒;王巍;;缓蚀剂对7075铝合金缓蚀性能的研究[J];电镀与精饰;2015年11期
3 王月华;;7075与6063异种铝合金的焊接技术研究[J];企业技术开发;2015年23期
4 王新印;夏妍;周亚茹;聂林林;曹发和;张鉴清;曹楚南;;基于扫描电化学显微镜产生/收集和反馈模式研究纯Mg腐蚀行为[J];金属学报;2015年05期
5 侯健;张彭辉;郭为民;;船用铝合金在海洋环境中的腐蚀研究[J];装备环境工程;2015年02期
6 刘轩;刘慧丛;李卫平;叶序彬;朱立群;;7075铝合金在不同温度盐水环境中的腐蚀疲劳行为[J];航空学报;2014年10期
7 张波;方志刚;李向阳;董彩常;;铝合金船舶的腐蚀防护技术现状与展望[J];中国材料进展;2014年07期
8 郑传波;李春岭;益帼;芦笙;高延敏;张克;;高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为[J];材料保护;2014年06期
9 李丽;苏霄;;1050A铝合金模拟海洋大气环境腐蚀行为的中性盐雾试验[J];腐蚀与防护;2014年04期
10 胡博;王建朝;刘影;赵美峰;陆军;黄岩;;7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为[J];材料保护;2014年03期
中国博士学位论文全文数据库 前1条
1 余秀明;低合金高强度钢浪花飞溅区点蚀行为及机理研究[D];中国科学院研究生院(海洋研究所);2016年
中国硕士学位论文全文数据库 前3条
1 贾睿程;铝合金AA2024、AA6061和AA7075电化学腐蚀行为[D];内蒙古科技大学;2012年
2 彭文才;铝合金在海水中的腐蚀性能研究[D];湖南大学;2010年
3 陈文敬;高强铝合金应力条件下的腐蚀行为及其电化学行为研究[D];中南大学;2008年
,本文编号:2349601
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2349601.html