镍基单晶高温合金静态再结晶实验研究及数值模拟
[Abstract]:Single crystal superalloy turbine blade is a key hot end component of modern advanced aero-engine. Recrystallization defects have significantly reduced its mechanical properties and need to be avoided. The recrystallization mechanism of single crystal superalloy and the regularity of recrystallization of single crystal blade are studied by means of simulation technology and experimental characterization. It is of great significance to reduce the appearance of recrystallization defects and improve the yield of single crystal blade. Considering the anisotropy of mechanical properties of Ni-based single crystal superalloys, a thermoelastic-plastic model for engineering applications was established, and the key constitutive parameters of DD6 alloys were obtained by regression analysis. The typical geometric characteristics are simulated and analyzed. The results show that the effect of geometric structure of castings on plastic deformation is much greater than that of crystal orientation, and the recrystallization position of simple hollow test bars is predicted. The predicted results are in good agreement with the experimental results. The mechanism of recrystallization nucleation and growth of single crystal superalloy was studied by thermal compression test and indentation test. Deformation temperature has an important effect on recrystallization sensitivity under small deformation condition, and the microstructure evolution of recrystallization is affected by non-uniform microstructure. Large plastic deformation can promote recrystallization nucleation and increase the rate of recrystallization grain boundary at the same time, but recovery treatment is difficult to reduce the recrystallization tendency of deformed samples. Laminated fault defects in deformed microstructure can promote recrystallization nucleation, while coherent 纬 'particles seriously hinder the recrystallization grain boundary. In addition, the anisotropy of single crystal material will influence the distribution of recrystallization region. A cellular automaton (CA) model was established to simulate the microstructure evolution of recrystallization of single crystal superalloys. The influence of as-cast dendritic structure and deformation temperature was taken into account in the model. The distribution of recrystallization driving force was simulated by thermoelastic-plastic model, and the activation energy data of recrystallization grain boundary and other related model parameters were obtained. The evolution of recrystallization microstructure with time was simulated, and the simulation results of recrystallization microstructure under isothermal and standard solution conditions were compared with the experimental results. The characteristics of recrystallization kinetics were discussed and the causes of irregular recrystallization grain boundaries were analyzed. Considering the structural characteristics of single crystal hollow turbine blades, two simple casting models were designed, and directional solidification experiments and standard heat treatment experiments were carried out. The location of recrystallization is predicted by simulation analysis of plastic deformation distribution, and the results are compared with the experimental results. The results are in good agreement with each other. The fine structure introduced by casting process, such as bulge caused by core brace, is easy to be recrystallized. The stress concentration characteristics of holes, grooves and thin-walled walls do not necessarily lead to recrystallization, but the superposition of various characteristics may lead to the occurrence of recrystallization. The simulation of temperature field and plastic deformation of a single crystal hollow turbine blade during directional solidification is carried out. The location of recrystallization is analyzed and forecasted, which is in good agreement with the actual production results. Finally, some technical measures to reduce the recrystallization of single crystal blade during directional solidification are put forward.
【学位授予单位】:清华大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:V252;TG132.3
【相似文献】
相关期刊论文 前10条
1 周邦新 ,刘起秀;铀板的再结晶[J];原子能科学技术;1965年08期
2 宋晓艳,R.Markus,张久兴;含有两尺寸组粒子分布的多相材料再结晶的研究[J];金属学报;2004年10期
3 张继祥;杨钢;钟厉;;金属再结晶Monte Carlo Potts模拟新模型[J];重庆交通大学学报(自然科学版);2009年04期
4 张娟;杜予fE;向周丹;;基于晶体取向q值计算再结晶分数的改进方法[J];理化检验(物理分册);2011年04期
5 ;热处理与铝及某些二元铝合金箔材再结晶的关系[J];轻合金加工技术;1979年03期
6 伊藤邦夫 ,张宏辉;铝合金的再结晶过程[J];轻合金加工技术;1981年03期
7 顾景诚;;铝合金的再结晶[J];轻合金加工技术;1982年Z3期
8 浅见重则;姚立群;;3004铝合金热轧时的再结晶情况[J];铝加工;1990年03期
9 毛卫民;含钛冷轧铝板的再结晶机制[J];科学通报;1992年02期
10 高甲生,梁桂儿,何宜柱,尹桂全;快速加热时冲压钢的再结晶特点[J];华东冶金学院学报;1994年02期
相关会议论文 前6条
1 关垲;;抗氢钢的再结晶特性[A];中国工程物理研究院科技年报(2000)[C];2000年
2 孙昊;任慧平;金自力;韩明;;退火对冷轧钢板再结晶影响的研究[A];第二届全国背散射电子衍射(EBSD)技术及其应用学术会议暨第六届全国材料科学与图像科技学术会议论文集[C];2007年
3 李凡;黄海波;李金刚;;用EBSP研究铜的变形和再结晶过程[A];2005年全国计算材料、模拟与图像分析学术会议论文集[C];2005年
4 纪艳丽;郭富安;潘琰峰;;热轧6022合金再结晶现象的EBSD研究[A];第十一届中国体视学与图像分析学术会议论文集[C];2006年
5 贾淑果;刘平;田保红;任凤章;郑茂盛;周根树;;微量Cr元素对Cu-Ag合金力学性能的影响[A];第九次全国热处理大会论文集(二)[C];2007年
6 王友彬;林毅;胡治流;曾建民;;Mn对冷轧Al-Mg-Si-Cu合金再结晶行为的影响[A];2010(南昌)中西部第三届有色金属工业发展论坛论文集[C];2010年
相关重要报纸文章 前1条
1 高宏适;冷轧板组织预测技术现状及研究方向[N];世界金属导报;2012年
相关博士学位论文 前10条
1 王宏坡;铌钛双稳定化高纯铁素体不锈钢的组织与性能[D];东北大学;2013年
2 徐超玲;面心立方金属(Al和Ni)再结晶形核机理的三维与原位研究[D];重庆大学;2016年
3 李忠林;镍基单晶高温合金静态再结晶实验研究及数值模拟[D];清华大学;2016年
4 张中武;定向再结晶及其动力学研究[D];南京理工大学;2008年
5 郭文明;再结晶碳化硅烧结机理及其材料性能改进研究[D];湖南大学;2012年
6 阴树标;薄板坯连铸连轧流程低碳高铌钢的再结晶及相变规律[D];昆明理工大学;2008年
7 麻晓飞;二相粒子材料再结晶退火的元胞自动机模型及其模拟研究[D];山东大学;2008年
8 张玉彬;大形变量轧制金属镍退火过程中再结晶与晶粒长大研究[D];清华大学;2009年
9 王健;基于流变曲线的热塑性变形过程微观组织模拟建模研究[D];燕山大学;2009年
10 赵阳;定向凝固钴基高温合金DZ40M的再结晶行为[D];东北大学;2008年
相关硕士学位论文 前10条
1 张国t;强磁场对冷轧纯铜板再结晶微观组织与织构的影响[D];东北大学;2014年
2 刘龙龙;高性能Fe-Mn-Cu-C TWIP钢板材制备及力学性能的研究[D];福州大学;2014年
3 范海洋;冷轧及退火钽板组织均匀性的多尺度研究[D];重庆大学;2016年
4 彭联;基于CSP工艺弹簧钢50CrV4再结晶研究及组织预报[D];武汉科技大学;2016年
5 郭金星;基于CSP工艺合金工具钢75Cr1再结晶研究及组织预报[D];武汉科技大学;2016年
6 王永明;DZ125合金叶片再结晶分析及抑制工艺研究[D];大连理工大学;2016年
7 浦一凡;DZ125合金的组织演化及再结晶行为研究[D];沈阳工业大学;2017年
8 穆治宏;基于元胞自动机方法的再结晶过程数值模拟[D];河北工业大学;2010年
9 李杰;不锈钢热轧板材再结晶的研究[D];兰州理工大学;2010年
10 李彬;张力作用下Pb-Ca-Sn-Al合金再结晶模型与组织模拟的研究[D];武汉科技大学;2015年
,本文编号:2379786
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2379786.html