方形相变蓄热单元内Al-Cu合金熔化和凝固过程传热特性研究
发布时间:2019-01-05 04:50
【摘要】:能源短缺是人类面临的最严峻的社会问题之一。潜热蓄热(LHTES)技术可以缓解能源在时间和强度上的不连续性和不稳定性,同时又具备储能密度高、过程易于控制、蓄放热过程近似等温等优点,因而在电力调峰、太阳能利用、余废热回收和航空航天等领域有着极大的利用价值。相变材料的潜热蓄热性能及其在相变过程中的传热特性都是潜热蓄热技术研究的重要课题。采用差示扫描量热法(DSC)和激光脉冲法(LFA)研究了 Cu含量在7.4%~51.7%范围内的Al-Cu合金相变材料的相变温度、相变潜热、比热、热扩散系数、导热系数及其热稳定性,并结合其金相组织对热力学性能影响规律的内在机理进行了分析。结果显示,当Cu含量在7.4%~51.7%范围内时,Al-Cu合金的相变温度在524.4~645.9 ℃范围内;随Cu含量的增加,Al-Cu合金的质量潜热呈递减趋势,而体积潜热却呈上升趋势。当Cu含量在7.4%~51.7%范围内时,Al-Cu合金的比热随Cu含量的增加呈递减趋势;当温度在25~500 ℃范围内时,Al-Cu合金的比热随温度增加呈递增趋势。此外,Al-Cu合金的导热系数随Cu含量的升高而降低,但即使Cu含量达到51.7%,其常温下的导热系数仍然高达104 W·m-1·K-1。Al-Cu合金的具备较好的热稳定性,在经过300次(历时18000min)加速熔化、凝固循环后,Al-Cu合金的相变温度和相变潜热均在较小范围内变化。研究结果表明,Al-Cu合金作为高温相变材料具有在太阳能蓄热领域中应用的巨大潜力。对中心带有恒温换热圆管的方形蓄热单元内Al-Cu合金的熔化和凝固过程进行了数值模拟,研究了相变材料(PCM)的熔化和凝固特性以及蓄热单元宽高比和中心换热管位置对PCM熔化和凝固过程的影响,并探讨了蓄热面积系数的影响作用。结果显示,对于中心换热管直径为20 mm、横截面积为6400 mm2的方形蓄热单元,PCM的熔化和凝固时间均随着宽高比的增加呈现先缩短后增长的变化趋势,且当宽高比约为1.56时,PCM的熔化时间最短,定义其为该蓄热单元的最佳熔化宽高比;当宽高比约为1时,PCM的凝固时间最短,定义其为该蓄热单元的最佳凝固宽高比。当蓄热面积系数增加时,蓄热单元的最佳熔化宽高比出现了增大的趋势,而最佳凝固宽高比保持不变。此外,PCM的熔化和凝固时间随着中心换热管位置y的减小呈现出先缩短后增长的变化趋势。定义方形蓄热单元内PCM熔化/凝固时间最短时对应的中心换热管位置y为最佳熔化/凝固换热管位置。那么,上述单元的最佳熔化换热管位置介于-1/16H和-1/8H之间,最佳凝固换热管位置约为0。当蓄热面积系数增加时,蓄热单元的最佳熔化换热管位置出现了减小的趋势,而最佳凝固换热管位置保持不变。将方形蓄热单元的宽高比和中心换热管位置的研究相结合,在单元处于最佳熔化宽高比(K=1.56)和最佳凝固宽高比(K=1.56)条件下,分别对中心换热管位置在熔化和凝固过程中的影响作用进行了对比研究。
[Abstract]:Energy shortage is one of the most serious social problems facing mankind. Latent heat storage (LHTES) technology can alleviate the discontinuity and instability of energy in time and intensity, at the same time, it has the advantages of high energy storage density, easy to control the process and similar isothermal heat storage and exothermic process, so it is used in power peak-shaving. Solar energy utilization, waste heat recovery, aerospace and other fields have great value. The latent heat storage performance of phase change materials and their heat transfer characteristics in the process of phase change are important subjects in the research of latent heat storage technology. The phase transformation temperature, latent heat, specific heat and thermal diffusion coefficient of Al-Cu alloy phase change material with Cu content in the range of 7.4% and 51.7% were studied by differential scanning calorimetry (DSC) and laser pulse (LFA). The thermal conductivity and thermal stability were analyzed, and the internal mechanism of the influence of metallographic structure on thermodynamic properties was analyzed. The results show that when the Cu content is within the range of 7.4% and 51.7%, the transformation temperature of the Al-Cu alloy is in the range of 524.440 ~ 645.9 鈩,
本文编号:2401296
[Abstract]:Energy shortage is one of the most serious social problems facing mankind. Latent heat storage (LHTES) technology can alleviate the discontinuity and instability of energy in time and intensity, at the same time, it has the advantages of high energy storage density, easy to control the process and similar isothermal heat storage and exothermic process, so it is used in power peak-shaving. Solar energy utilization, waste heat recovery, aerospace and other fields have great value. The latent heat storage performance of phase change materials and their heat transfer characteristics in the process of phase change are important subjects in the research of latent heat storage technology. The phase transformation temperature, latent heat, specific heat and thermal diffusion coefficient of Al-Cu alloy phase change material with Cu content in the range of 7.4% and 51.7% were studied by differential scanning calorimetry (DSC) and laser pulse (LFA). The thermal conductivity and thermal stability were analyzed, and the internal mechanism of the influence of metallographic structure on thermodynamic properties was analyzed. The results show that when the Cu content is within the range of 7.4% and 51.7%, the transformation temperature of the Al-Cu alloy is in the range of 524.440 ~ 645.9 鈩,
本文编号:2401296
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2401296.html