基于COMSOL的微弧氧化过程温度场分布研究
[Abstract]:Aim to study the effect of temperature field distribution on film formation and surface morphology in the process of micro-arc oxidation. Methods based on a discharge channel of 7075 aluminum alloy during micro-arc oxidation, a mathematical model and a physical model of micro-arc oxidation heat transfer process were established based on the multi-physical field simulation software COMSOL Mutiphysics. Based on the finite element method, the temperature field distribution in the process of micro-arc oxidation film formation is solved, and the temperature-time curve is drawn by selecting the specific reference line and reference point. The temperature longitudinal depth curve, temperature distribution cloud diagram and temperature gradient distribution cloud diagram were drawn at four key time points of 0: 100 ~ 500 渭 s and 1000 渭 s, and the influence of them on the surface morphology of ceramic coatings was investigated. Results the temperature drop rate in the discharge channel was the fastest at 0 ~ 100 渭 s, decreased gradually at 100 ~ 500 渭 s, and decreased at 500 ~ 1000 渭 s, the temperature drop rate was the smallest and tended to be constant at 500 ~ 1000 渭 s. Compared with the central region of the discharge channel, the temperature drop rate is faster and the temperature gradient is larger in the area near the interface between the aluminum oxide film and the aluminum alloy substrate. The longitudinal depth of the highest temperature is 93o 20 ~ 2638 渭 m, which decreases at first and then increases when the maximum temperature is at 1000 渭 s. Conclusion the cooling effect of electrolyte on the microarc oxidation process is mainly within 100 渭 s after the discharge channel is formed. In addition to electrolyte, the interface between alumina film and aluminum alloy substrate has a certain cooling effect in the process of micro-arc oxidation film formation, and the uneven cooling rate in different regions of discharge channel is the main reason for the formation of crater hole on the surface of oxide film.
【作者单位】: 烟台大学机电汽车工程学院;海军航空工程学院基础实验部;
【基金】:国家自然科学基金资助项目(51405416) 山东省自然科学基金资助项目(ZR2014EEQ024) 山东省科技发展计划(2012YD15010)~~
【分类号】:TG174.45
【参考文献】
相关期刊论文 前7条
1 唐婉霞;严继康;倪尔鑫;段志操;吴云峰;杨钢;;微弧氧化的机理及其发展趋势[J];热加工工艺;2016年14期
2 谷萌;李丽;朱翠雯;戴春爽;孙浩;杜强;;基于有限元对电火花放电加工中钕铁硼材料温度场的研究[J];热加工工艺;2013年24期
3 蒋百灵;刘东杰;;制约微弧氧化技术应用开发的几个科学问题[J];中国有色金属学报;2011年10期
4 王艳秋;王岳;陈派明;邵亚薇;王福会;;7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能[J];金属学报;2011年04期
5 陈宏;郝建民;冯忠绪;;微弧氧化机理及电击穿模型[J];长安大学学报(自然科学版);2008年05期
6 李华平;柴广跃;彭文达;阳英;高敏;郭宝平;牛憨笨;;微弧熔区的淬冷过程及其对氧化铝膜微观结构的影响[J];无机材料学报;2008年01期
7 邓志威,来永春,薛文彬,陈如意,宋红卫;微弧氧化材料表面陶瓷化机理的探讨[J];原子核物理评论;1997年03期
相关博士学位论文 前1条
1 辛铁柱;铝合金表面微弧氧化陶瓷膜生成及机理的研究[D];哈尔滨工业大学;2006年
相关硕士学位论文 前1条
1 马晋;铝合金微弧氧化工艺研究[D];武汉理工大学;2003年
【共引文献】
相关期刊论文 前10条
1 孙泽;刘浩;孔德军;;7475铝合金微弧氧化膜在不同载荷下摩擦-磨损行为[J];热加工工艺;2017年16期
2 陈超;张玉平;陈为为;程焕武;王鲁;;铝合金表面蓝色微弧氧化陶瓷膜的制备及性能研究[J];材料导报;2017年10期
3 姜曼;柴永生;周京;牟玲龙;岳艳丽;;基于COMSOL的微弧氧化过程温度场分布研究[J];表面技术;2017年05期
4 吴英豪;赵文杰;王武荣;张彦彦;李龙阳;薛群基;;铝合金表面微/纳米结构构筑研究进展[J];表面技术;2017年05期
5 王平;伍婷;肖佑涛;蒲俊;徐明;向春浪;郭小阳;;Al_2O_3微粉添加量对镁合金微弧氧化膜特性影响[J];稀有金属材料与工程;2017年05期
6 王浩;宁成义;黄亿辉;陈晓晓;田传鑫;张文武;;激光冲击强化对7075铝合金干摩擦特性的实验研究[J];应用激光;2017年02期
7 谢W,
本文编号:2418267
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2418267.html