基于特征的复杂结构件数控加工刀具状态实时辨识方法
[Abstract]:Signal monitoring based on cutting force and vibration is an effective method for real-time identification of cutting tool status in NC machining. The monitoring signal in NC machining process is not only related to the tool state itself, but also affected by the geometric shape of the workpiece. Because of the influence of process parameters and other factors, the accuracy of tool state identification in NC machining process is poor, especially for complex structural components which are multi-product and small batch production, the above problems are more serious. In order to solve the above problems, the real-time identification method of NC machining tool status based on feature is deeply studied in this paper. The main achievements of this paper are as follows: (1) the commonly used sensors of NC machining tool condition monitoring are analyzed, and the cutting force is selected as the signal of tool condition monitoring in this paper. The influence of machining features on cutting force monitoring signal is analyzed by experimental method, and then a feature-based tool state identification method for NC machining of complex structural components is proposed, and a feature-based tool state identification information model is established. The advantage of identifying tool state based on feature is analyzed. (2) the monitoring signal in NC machining is not only related to tool state, but also affected by workpiece geometry and process parameters. The influence of machining feature and tool state on monitoring signal is analyzed. The correlation between machining feature geometric shape monitoring signal and machining feature is established, and the real-time correlation between tool condition monitoring signal and machining feature is realized. The tool state identification can be classified according to different machining features. (3) the feature-based monitoring signal processing method and the tool state real-time identification method are studied. According to the machining features of different aircraft structures, different signal sensitive quantities are extracted, and the tool state identification vector is constructed by combining the geometric information and process information of machining features. The tool state identification vectors are classified by K-Means clustering algorithm. A feature-based tool state identification system for NC machining of complex frame members is developed. (4) A real-time tool state identification system based on CATIA/CAA and LABVIEW for NC machining of complex frame members is developed and verified in experiments.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG659
【参考文献】
相关期刊论文 前10条
1 闫杉;胡小锋;刘颖超;张洁;;轮槽半精铣刀寿命自适应预测方法研究[J];组合机床与自动化加工技术;2016年09期
2 朱绍维;李卫东;汤立民;杜丽;;ARTIS刀具监控系统在航空结构件铣削加工中的应用[J];中国机械工程;2016年15期
3 朱绍维;牟文平;汤立民;杜丽;;融合工艺信息的复杂零件加工状态识别方法[J];中国机械工程;2016年11期
4 刘宇;汪惠芬;刘庭煜;;一种基于多特征和支持向量机的刀具磨损状态识别技术[J];制造业自动化;2016年05期
5 周鑫;李迎光;刘浩;刘长青;;基于特征的飞机复杂结构件切削力快速预测与评价方法[J];中国机械工程;2015年07期
6 黎明;李迎光;刘长青;刘浩;;基于特征的飞机结构件加工状态监测方法[J];航空制造技术;2015年05期
7 张栋梁;莫蓉;孙惠斌;李春磊;苗春生;李冀;;基于混沌时序分析方法与支持向量机的刀具磨损状态识别[J];计算机集成制造系统;2015年08期
8 姜振喜;孙杰;李国超;贾兴民;李剑峰;;TC4铣削加工的刀具磨损与切削力和振动关系研究[J];兵工学报;2015年01期
9 袁筱赋;;金属机床切削刀具破损产生的原因及对策[J];今日科苑;2012年24期
10 陈群涛;石新华;邵华;;基于振动信号EMD和ICA的刀具破损识别[J];工具技术;2012年12期
相关博士学位论文 前4条
1 李威霖;车铣刀具磨损状态监测及预测关键技术研究[D];西南交通大学;2013年
2 关山;基于声发射信号多特征分析与融合的刀具磨损分类与预测技术[D];吉林大学;2011年
3 高宏力;切削加工过程中刀具磨损的智能监测技术研究[D];西南交通大学;2005年
4 熊四昌;基于计算机视觉的刀具磨损状态监测技术的研究[D];浙江大学;2003年
相关硕士学位论文 前7条
1 柳洋;刀具磨损在线监测研究[D];华中科技大学;2014年
2 封海蕊;基于数字图像的刀具磨损状态监测研究[D];浙江理工大学;2013年
3 张吉林;基于机器视觉的铣削刀具磨损监测技术研究[D];南京航空航天大学;2013年
4 张石磊;飞机结构件槽特征数控加工自动工艺决策方法[D];南京航空航天大学;2012年
5 谢剑峰;基于声发射的铣刀破损监测研究[D];上海交通大学;2011年
6 汤为;基于声发射法的铣刀磨损状态识别研究[D];上海交通大学;2009年
7 庄子杰;基于声发射和振动法的刀具磨损状态检测研究[D];上海交通大学;2009年
,本文编号:2441920
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2441920.html