当前位置:主页 > 科技论文 > 铸造论文 >

面向复杂曲面加工的NURBS曲线逼近及插补算法研究

发布时间:2019-04-02 06:37
【摘要】:复杂曲面类零件通常由自由曲线曲面构成,其中NURBS曲线的逼近和插补算法是复杂曲面数字化制造中的关键技术,本文对复杂曲面加工中涉及到的NURBS插补和逼近理论进行了深入研究。提出了基于特征点提取及改进粒子群算法的NURBS曲线逼近算法,压缩了复杂曲面断面轮廓重建中NURBS逼近曲线的控制顶点数量;为提升复杂曲面加工中采用相同节点向量生成双NURBS刀具路径的逼近精度,构建了变权重的刀轴点曲线逼近优化模型,利用改进协同进化遗传算法求解该模型,得到曲线的最优权重值;考虑传统NURIBS插补算法在插补精度与插补速度波动率方面的缺陷,提出了基于改进S型速度规划及Steffensen型参数计算的插补算法。以叶轮叶片为例进行算法对比试验,验证了本文算法的有效性。本文研究的主要内容如下:第一章综述了复杂曲面加工中自由曲线逼近和插补算法的国内外研究现状,介绍了目前方法中存在的缺陷和解决思路。阐述了本文的研究意义,介绍了本文的组织结构。第二章提出了压缩控制顶点的NURBS曲线逼近算法。利用等弦长法计算离散点的曲率,基于曲率分析提取离散点列的特征点并构造初始逼近曲线。基于误差控制增加插值点并更新逼近曲线,利用改进的粒子群算法优化控制顶点的位置,得到最终逼近曲线。第三章提出了变权重的双NURBS刀具路径生成算法。基于误差控制选取部分刀具中心点和刀轴点离散数据并采用同一节点向量构造初始双NURBS曲线,构建变权重的刀轴点曲线逼近优化模型,利用改进协同进化遗传算法调整刀轴点曲线的权重值,降低了曲线的逼近误差。第四章提出了改进S型速度规划方法和带参数的Steffensen型插补参数计算方法。通过自适应插补得到曲线分段信息,根据曲率信息自适应调整最大加加速度并进行速度精确控制,改进了传统S型速度规划算法。采用正反向插补精确确定减速点,并利用带参数Steffensen型方法计算曲线插补参数,避免了求导运算,增强了插补实时性,有效控制了速度波动率。第五章以叶轮叶片为例验证了本文所提的理论和算法。实验结果表明,与传统方法相比本文算法生成的NURBS逼近曲线具有更少的控制顶点数,更高的逼近精度。改进后的NURBS插补算法有效降低了弦高误差,控制了速度波动率。第六章对论文的主要研究内容进行了总结,并对下一步的研究工作进行了展望。
[Abstract]:Complex surface parts are usually composed of free-form curves and surfaces, in which the approximation and interpolation algorithm of NURBS curves is the key technology in digital manufacturing of complex surfaces. In this paper, the NURBS interpolation and approximation theory involved in the machining of complex surfaces are deeply studied. A NURBS curve approximation algorithm based on feature point extraction and improved particle swarm optimization (PSO) is proposed, which compresses the number of control vertices of NURBS approximation curve in profile reconstruction of complex surfaces. In order to improve the approximation accuracy of double NURBS tool path generated by the same node vector in the machining of complex surface, an optimization model of tool pivot point curve approximation with variable weight is constructed, and the improved coevolutionary genetic algorithm is used to solve the model. The optimal weight value of the curve is obtained. Considering the shortcomings of traditional NURIBS interpolation algorithm in interpolation precision and interpolation velocity volatility, an interpolation algorithm based on improved S-type velocity programming and Steffens type parameter calculation is proposed. Taking the impeller blade as an example, the validity of the algorithm is verified by comparing the algorithm. The main contents of this paper are as follows: in the first chapter, the research status of free curve approximation and interpolation algorithm in complex surface machining is summarized, and the defects and solutions of the present methods are introduced. This paper expounds the research significance of this paper, and introduces the organization structure of this paper. In chapter 2, a NURBS curve approximation algorithm for compressed control vertices is proposed. The curvature of discrete points is calculated by means of equal chord length method. The characteristic points of discrete point sequence are extracted based on curvature analysis and the initial approximation curve is constructed. Based on the error control, the interpolation point is added and the approximation curve is updated. The improved particle swarm optimization algorithm is used to optimize the position of the control vertex, and the final approximation curve is obtained. In chapter 3, a double NURBS tool path generation algorithm with variable weights is proposed. Based on the error control, some discrete data of tool center point and tool pivot point are selected, and the initial double NURBS curve is constructed by using the same node vector, and the tool pivot point curve approximation optimization model with variable weight is constructed. The improved coevolutionary genetic algorithm is used to adjust the weight value of the tool pivot point curve, and the approximation error of the curve is reduced. In chapter 4, an improved S-type velocity programming method and a Steffens-type interpolation parameter calculation method with parameters are presented. The curve segment information is obtained by adaptive interpolation, and the maximum acceleration is adjusted adaptively according to the curvature information and the speed is precisely controlled. The traditional S-type speed planning algorithm is improved. The forward and inverse interpolation is used to accurately determine the deceleration point, and the Steffensen method with parameters is used to calculate the curve interpolation parameters. The derivation operation is avoided, the real-time performance of the interpolation is enhanced, and the velocity fluctuation is effectively controlled. The fifth chapter takes the impeller blade as an example to verify the theory and algorithm proposed in this paper. The experimental results show that the NURBS approximation curve generated by this algorithm has fewer control vertices and higher approximation accuracy than the traditional method. The improved NURBS interpolation algorithm can effectively reduce the chord height error and control the velocity volatility. In the sixth chapter, the main research contents are summarized, and the future research work is prospected.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG659

【相似文献】

相关期刊论文 前10条

1 王琨琦,王润孝,张长富;NURBS曲线与圆弧求交的剪刀迭代法[J];机床与液压;2004年01期

2 韩庆瑶;董云风;师向红;;基于NURBS曲线的逼近研究[J];煤矿机械;2006年08期

3 ;An Approximation Method of NURBS Curves in NC Machining[J];武汉理工大学学报;2006年S2期

4 ;Study of NURBS Interpolation Algorithm Based on Self-adaptive Control[J];International Journal of Plant Engineering and Management;2009年04期

5 葛玉琛,李雪蕾;利用NURBS曲线生成版纹的新方法[J];印刷技术;2000年05期

6 孙季初;在工具和模具制造中基于NURBS的过程链[J];世界制造技术与装备市场;2002年01期

7 韩庆瑶,贾桂红,黄燕梅;三次NURBS曲线轮廓的数控加工编程处理[J];煤矿机械;2005年01期

8 粟烂芝;王品;;NURBS曲线自适应插值拟合算法[J];组合机床与自动化加工技术;2011年01期

9 沈斌;齐党进;樊留群;朱志浩;;基于NURBS曲线拟合的微段高速自适应加工算法[J];中国机械工程;2012年15期

10 SUN Yuwen;ZHOU Jianfeng;GUO Dongming;;VARIABLE FEEDRATE INTERPOLATION OF NURBS TOOLPATH WITH GEOMETRIC AND KINEMATICAL CONSTRAINTS FOR FIVE-AXIS CNC MACHINING[J];Journal of Systems Science & Complexity;2013年05期

相关会议论文 前10条

1 乔学军;刘蓉;;一种构造光滑的闭NURBS曲线的算法及应用[A];图像图形技术与应用进展——第三届图像图形技术与应用学术会议论文集[C];2008年

2 陈周锋;武振锋;;NURBS方法在汽车设计应用中的改进[A];第九届中国CAE工程分析技术年会专辑[C];2013年

3 余武志;胡鹏浩;赵前程;;螺杆转子的NURBS建模[A];第十九届测控、计量、仪器仪表学术年会(MCMI'2009)论文集[C];2009年

4 Limei Wang;Rui Liu;;Research of Direct-drive XY Table Contouring Control Based on NURBS Interpolator[A];第25届中国控制与决策会议论文集[C];2013年

5 王兴波;吴正洪;钟志华;;平面NURBS曲线拐点的分析与控制[A];第一届全国几何设计与计算学术会议论文集[C];2002年

6 孙利君;张彩明;;一种对NURBS曲线进行形状调整的新方法[A];第一届全国几何设计与计算学术会议论文集[C];2002年

7 成敏;王国瑾;;NURBS曲面显式降多阶逼近[A];几何设计与计算的新进展[C];2005年

8 乔志峰;王太勇;胡淼;;具有自适应精度控制功能的五轴NURBS插补方法研究[A];机械动力学理论及其应用[C];2011年

9 向长波;许建华;;基于NURBS曲线的不规则物体三维重建与测量[A];2009全国虚拟仪器大会论文集(一)[C];2009年

10 王楠;张玉;陈铭;梁昌洪;;NURBS曲面的UTD爬行波射线寻迹算法研究[A];2005'全国微波毫米波会议论文集(第三册)[C];2006年

相关博士学位论文 前10条

1 李新康;层合结构等几何分析研究[D];浙江大学;2015年

2 臧婷;基于NURBS的非均质实体建模方法研究[D];河北工业大学;2013年

3 余道洋;基于NURBS的复杂曲线曲面高速高精度加工技术研究[D];合肥工业大学;2014年

4 陈绍平;NURBS曲线及其在船舶型线设计中的应用研究[D];武汉理工大学;2002年

5 玄冠涛;凸轮轮廓NURBS重构与工作特性优化研究[D];山东农业大学;2014年

6 吴继春;曲面数控加工编程轨迹的NURBS拟合及插补算法研究[D];华中科技大学;2012年

7 于丕强;NURBS曲面重构中的几何连续性问题[D];大连理工大学;2002年

8 冀世军;反求工程的NURBS曲面拼接与拟合技术研究[D];哈尔滨工业大学;2008年

9 孙海洋;NURBS曲线刀具路径实时插补技术研究[D];国防科学技术大学;2008年

10 徐乐;基于NURBS技术的电大复杂目标RCS预估技术研究[D];西安电子科技大学;2009年

相关硕士学位论文 前10条

1 王文莉;针对小线段加工的NURBS自适应插补算法的研究[D];山东大学;2015年

2 沈均成;NURBS曲线相关积分量的计算[D];武汉理工大学;2015年

3 王占猛;基于NURBS的逆向工程技术的研究[D];辽宁科技大学;2015年

4 尹乐平;二次NURBS曲线的退化曲线[D];大连理工大学;2015年

5 孙喜庆;小线段轨迹的圆弧拟合和NURBS曲线的离散算法研究[D];哈尔滨工业大学;2015年

6 李业鹏;多约束综合控制的NURBS曲线插补算法及其刀补研究与实现[D];湘潭大学;2015年

7 王静;基于NURBS的隧道与地层一体化三维建模[D];湖南科技大学;2015年

8 张君;面向连续短线段高速加工的平滑转接及前瞻控制研究[D];上海工程技术大学;2016年

9 申强强;基于NURBS建模的反射面天线赋形与优化[D];南京理工大学;2016年

10 张小燕;封边曲线NURBS插值和偏置算法研究[D];东北林业大学;2016年



本文编号:2452341

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2452341.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d1e0f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com