液态Ga高压局域结构演化研究
[Abstract]:The study of the structure of Ga under extreme conditions is a long-term important base study. As an elementary element with a rich multi-form phase, Ga shows a rare physical characteristic in the form of a special bond in which the covalent bond and the metal bond coexist. The stable Ga-I phase is a special case of the rare excimer metal, and the high-voltage solid phase Ga-II and the Ga-III phase have the characteristics of the common metal. The other interesting point of this element is the study of the liquid structure of the system, Ga not only can form the subcooled liquid at normal pressure, and the liquid density is 3% higher than the stable Ga-I density, and the abnormal melting curve is shown. In addition, liquid phase change may be present in that liquid Ga, but there is still a great deal of dispute in the related study. Although a large number of experimental and theoretical studies have been conducted on liquid Ga, the understanding of its characteristics and structure is still very limited, for example, direct experimental measurements of the density under high pressure conditions have been challenging due to the lack of long-range order of the liquid Ga system, There is a need for further research. In this paper, we study the local structure, density and liquid-liquid phase change of the liquid Ga system under the condition of liquid Ga pressure, and the following results are obtained. (1) The relative volume change of liquid and solid Ga at different temperature was studied by using in-situ high-voltage synchrotron radiation X-ray 3D imaging technique in combination with energy dispersive X-ray diffraction. The P-V relation curve of liquid Ga is obtained directly by 3D imaging pattern data reconstruction, and the isothermal volume modulus of the liquid Ga is 23.6 (0.5) GPa and 24.6 (0.4) GPa, respectively, by using the equation of state to obtain the compression conditions of 300 K-3.02 GPa and 330 K-3.63 GPa, respectively. The liquid phase change of liquid Ga under the condition of 330 K-2.44 GPa was found through abnormal compression. (2) The local structure of liquid Ga under the pressure of 1.9 GPa is studied by in-situ high-energy X-ray scattering experiment, and the two-body distribution function of the system is simulated by using the measurement density as the basic input parameter. The pressure interval applied in the experiment covers the range of the Ga-I to Ga-II solid phase transition in the Ga system. Previous studies are based on the known crystal structure, and the local structure of the liquid Ga displayed in the region is composed of the local clusters of Ga-I and Ga-II, but the accuracy of such a fitting method has always been large. Our studies show a distinct result, that is, the local structure of liquid Ga is similar to that of the high-voltage crystalline phase Ga-II and Ga-III. The melting model of Ga is set up according to the free-volume theory, and it is pointed out that the atomic rearrangement of Ga-I phase quickly breaks the original structure in the melting of the system, and a sufficient free volume is obtained to form a liquid state. (3) The distribution function and the system density of the atomic distance of the liquid Ga are determined by the above experiments, and the fractal characteristics of the system are studied by the power law. the only non-integer power exponent d _ f can be used to characterize the fractal characteristics of the metal glass according to the power law, but for the same long-range disordered liquid ga system, The result of the power law shows that the system has a multiple power index and the power exponent values of the four adjacent ligands are greater than the Euclidean dimension 3. The results show that the power law is unable to determine the unique fractal dimension of the liquid Ga. In fact, the phenomenon that the nearest neighbor coordination number of the liquid Ga increases with the pressure leads to the absence of geometric self-similarity of the nearest neighbor coordination ball under different pressures, that is, the fractal dimension of the liquid Ga will change under the pressure. Based on the percolation model, the multi-exponential behavior of the system is limited to 11.65-11.38 with the pressure increase. Within the range of the associated length. The liquid Ga system which is out of this range presents a uniform state, and the fractal dimension D _ f = 3. (4) The structure of Ga 330 K under the condition of 3.7 GPa is studied by X-ray scattering, and the P-T range covers the liquid and solid state of the Ga system. Under the action of temperature and pressure, the liquid Ga is crystallized in the pressure region of 3.4-3.7 GPa, and the mixed twinning composed of Ga-II and Ga-III is presented. The crystallization phase and the phase diagram show a large deviation from the Ga-III phase, indicating that the temperature and pressure range is the metastable region. The results show that Ga melt, Ga-II and Ga-III have similar structural modules, resulting in the formation of Ga-II phase and Ga-III phase in the liquid Ga. At the same time, according to the classical nucleation theory, the metastable behavior of Ga is related to the nucleation probability of Ga-II and Ga-III. In addition, a rare 2.4-3.4 GPa liquid metastable zone was also found under the condition of 330 K. In the two experiments, different Ga-phases are observed under different temperature and pressure paths under the same temperature and pressure conditions, indicating that the metastable behavior of the liquid and solid state of the Ga system is closely related to the temperature and pressure path. In conclusion, for the first time, the density of liquid Ga under high pressure is directly measured by X-ray imaging experiment, and the liquid phase change of potential pressure is found at the temperature of 330 K. The high-voltage local structure of liquid Ga is studied. In this paper, a Ga melting model is established according to the free volume theory, and the relation of the multiple power index in the different scale range of the liquid Ga system is pointed out, and the solid state and the liquid metastable zone exist at the same time of the Ga at the temperature of 330 K. The research results of this paper further promote the study of the high-voltage structure and physical characteristics of Ga, and help to understand this particular element more deeply.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TG146.43
【相似文献】
相关期刊论文 前10条
1 陈海洋;滕彦国;王金生;;基于GA参数寻优的决策树支持向量机生态环境质量评价方法[J];生态与农村环境学报;2010年06期
2 陶建敏,庄智敏,章镇,韩传光,耿其芳;GA_3与GA_(4+7)对诱导巨峰葡萄产生无核及果实发育的影响[J];中外葡萄与葡萄酒;2005年02期
3 童东革,赖琼钰,吉晓洋;掺Ga对锂离子电池正极材料LiCo_(0.3-x)Ga_xNi_(0.7)O_2的影响[J];高等学校化学学报;2005年08期
4 坚增运;周晶;常芳娥;介万奇;;由形核过冷度研究Ga熔体原子团尺寸变化的滞后性[J];金属学报;2009年09期
5 富宏亚,王永章,路华,付云忠,长尾高明;基于NN与GA的曲面加工适应学习控制研究[J];哈尔滨工业大学学报;2001年02期
6 ;GA(P)62-63型数控外圆磨床[J];机电新产品导报;2000年Z5期
7 焦照勇;王东民;;Cs_2NaMF_6:Fe~(3+)(M=Al,Ga)体系局域结构理论研究[J];河南师范大学学报(自然科学版);2011年05期
8 袁清珂;石亚平;张明天;;基于GA纸箱印刷机送纸机构的优化设计[J];包装工程;2009年11期
9 蔡源;蒋丽芬;许宁;杨小燕;;绿色高效Ga(DS)_3在溶剂水中催化加成吲哚酮类化合物[J];上海化工;2011年11期
10 刘品高;谌芸;王进;葛毅华;;大气污染总量控制GA方法中的多源模拟系统[J];环境科学与技术;2009年06期
相关会议论文 前10条
1 尹秋菊;;基于信号博弈GA在客户关系管理中的应用[A];全国第九届企业信息化与工业工程学术会议论文集[C];2005年
2 唐福康;胡光宏;杨春波;;慢性浅表性胃炎脾胃湿热证血清CagA、VacA及胃窦粘膜内PCNA、凋亡细胞表达的研究[A];中国中西医结合学会第十五次全国消化系统疾病学术研讨会论文汇编[C];2003年
3 孙俊清;岳文英;杨鹏;;基于GA的集装箱在堆场中堆存位置的决策[A];中国自动化学会控制理论专业委员会D卷[C];2011年
4 杨毅;刘世龙;;~(66)Ga半衰期的测量[A];第三届全国核技术与应用学术研讨会会议资料文集[C];2012年
5 胡红焱;王海燕;;血清IgAl分子O-糖链的分析诊断工gA肾病[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年
6 钟俊波;李建章;曾俊;卢小林;;Ga掺杂α-Fe_2O_3的制备及光催化脱色性能[A];第十四届全国青年催化学术会议会议论文集[C];2013年
7 乔丹;孙晓岩;项曙光;;量子化学研究Ga改性对ZSM-5酸性影响[A];第十七届全国分子筛学术大会会议论文集[C];2013年
8 徐传明;许小亮;谢家纯;徐军;杨晓杰;冯叶;黄文浩;刘洪图;;Cu(In,Ga)_3Se_5薄膜的结构及其缺陷研究[A];TFC’03全国薄膜技术学术研讨会论文摘要集[C];2003年
9 杨明华;朱成建;潘毅;;新型手性Salen配体及其与Ti,Ga配合物的合成[A];第三届全国有机化学学术会议论文集(上册)[C];2004年
10 徐传明;许小亮;谢家纯;徐军;杨晓杰;冯叶;黄文浩;刘洪图;;Cu(In,Ga)_3Se_5薄膜的结构及其缺陷研究[A];全国薄膜技术学术研讨会论文集[C];2006年
相关重要报纸文章 前10条
1 袁媛;私募基金GA扩张亚洲业务[N];上海证券报;2007年
2 李博;GA:模块化UPS渐成主流[N];通信产业报;2009年
3 蒙克;GA:模块化UPS的布道者[N];网络世界;2009年
4 电脑商报记者 崔婷婷;GA:产品与服务推动版图扩张[N];电脑商报;2010年
5 特派记者 王琰;苏伊士运河被抛弃 GA欲改道非洲好望角[N];21世纪经济报道;2009年
6 本报记者 梦杨;GA品牌与中国速度[N];中国贸易报;2010年
7 本报记者 蒙克;GA:模块化UPS仍处市场教育期[N];网络世界;2010年
8 陈丹;美用液态金属构建无支撑3D结构[N];科技日报;2013年
9 南方日报记者 王腾腾 张婧 实习生 任浩;液态“终结者” 不再是纯幻想[N];南方日报;2014年
10 医学院;刘静小组可变形液态金属新发现为研制柔性机器开启全新途径[N];新清华;2014年
相关博士学位论文 前8条
1 李仁峰;液态Ga高压局域结构演化研究[D];哈尔滨工业大学;2017年
2 向超;Ga、In和稀土离子掺杂铝酸锌基的光电及吸附性能研究[D];昆明理工大学;2015年
3 刘艳芬;Ni_(50)Mn_(25)Ga_(25-x)Fe_x形状记忆合金纤维的相变行为及性能研究[D];哈尔滨工业大学;2015年
4 张华;浇注式沥青混凝土(GA)疲劳性能研究[D];重庆大学;2010年
5 谢琳;化合物GA对肺腺癌的实验性治疗作用及相关机制研究[D];昆明医科大学;2017年
6 李根;液态金属及碳纳米管强化界面传热研究[D];大连海事大学;2016年
7 马坤全;液态金属芯片散热方法的研究[D];中国科学院研究生院(理化技术研究所);2008年
8 张月红;钛合金TiH_2分解法液态置氢技术基础研究[D];哈尔滨工业大学;2010年
相关硕士学位论文 前10条
1 张强;几种Ga基低熔点合金热力学与液态结构研究[D];山东大学;2016年
2 陈臻;GA证券分公司经纪业务竞争力提升策略研究[D];南京师范大学;2016年
3 胡葆春;GA证券公司GS分公司的盈利模式优化研究[D];兰州交通大学;2015年
4 常淑蕾;Cr_(1-2)@Ga_(12)N_(12)和Mn_(1-2)@Zn_(12)Te_(12)团簇的结构和磁性理论研究[D];山西师范大学;2016年
5 曾志超;发光探针检测Ga~(3+)及pH的应用研究[D];西北农林科技大学;2017年
6 秦芩;GA公司一线员工流失原因及对策研究[D];华东理工大学;2015年
7 周扬胜;基于小波变换和GA的旋转机械故障诊断研究[D];重庆大学;2009年
8 张康;Cu(In,Ga)Se_2太阳能电池中Ga梯度分布的优化及其在低温生长工艺中的应用[D];中国科学院深圳先进技术研究院;2013年
9 王莹;GA公司铁合金产品印度市场营销策略研究[D];东华大学;2017年
10 张杰;GA公司机顶盒澳大利亚市场开拓研究[D];华东理工大学;2015年
,本文编号:2482022
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2482022.html