当前位置:主页 > 科技论文 > 铸造论文 >

H13钢激光表面强化与熔覆涂层的组织及磨损性能研究

发布时间:2019-05-30 04:11
【摘要】:H13(4Cr5MoSi V1)钢具有较好的综合性能,适用于制造精锻模、热挤压模、芯棒以及压铸模。多数模具的失效首先是从表面开始的,因而,采取恰当的方式改善表面组织、提高表面性能,可以有效的提高模具的使用寿命。本文采用5 kW连续CO2激光器在H13模具钢表面制备激光熔凝强化层和激光熔覆Co基、Ni基复合涂层。分别在H13钢表面熔覆Stellite-6、St6+5%WC、St6+5%WC+1%RE、St6+2.5%WC+1%RE、St6+7.5%WC+1%RE、St6+10%WC+1%RE钴基合金,制得显微组织均匀细小的钴基复合熔覆层。激光熔覆的镍基复合熔覆层包括Ni45、Ni45+5%WC、Ni45+5%WC+1%RE和Ni60AA、Ni60AA+5%WC、Ni60AA+5%WC+1%RE。采用光学显微镜、扫描电子显微镜、X射线衍射仪及透射电子显微镜对熔凝硬化层和熔覆层的显微组织、元素分布及相组成进行了系统研究;采用显微硬度计、磨损试验机研究了熔覆层的显微硬度和磨损性能。结果表明:(1)H13钢激光熔凝后的组织,由表层至次表层依次是垂直于激光扫描方向的树枝晶、胞状晶和马氏体组织及高温回火区,高温回火区的马氏体组织粗大,且残余奥氏体的含量减少。激光熔凝后,除原始组织中的相,没有新相生成。激光熔凝后的显微硬化层深度约1.1mm,最高硬度746HV0.2。硬化层的耐磨性相对调质处理后的H13钢的耐磨性有较大程度的提高。(2)钴基激光熔覆层与基体为冶金结合,各熔覆层的基体相组织为γ-Co,增强相组织均包括(Mn,Cr)7C3、Cr23C6、Co CX等相,加入WC后,熔覆层的增强相中增加了Co6W6C、WC、WC1-X相;稀土元素的加入有效控制了裂纹的生成,宏观形貌良好。熔覆层显微硬度为560 HV0.2~710 HV0.2;摩擦磨损试验表明,在相同条件下,耐磨性能由高到低依次是St6+7.5%WC+1%RE、St6+5%WC+1%RE、St6+2.5%WC+1%RE、St6、St6+10%WC+1%RE、H13钢。(3)Ni45基熔覆层的主要相组成为均匀细小的γ-Ni与枝晶间的Fe Ni3、C6(Cr,Co,Ni)23、Mn23C6等相组成的共晶组织。Ni45基熔覆层的显微硬度为525HV0.2~550HV0.2,熔覆层的耐磨性相对H13钢基体有较大程度的提高,尤其是在高载荷下熔覆层的磨损机制主要是磨粒磨损和剥层磨损,并未出现严重磨损。加入WC后耐磨性的提高尤为明显。(4)Ni60AA基熔覆层的微观组织为γ-Ni固溶体基体上均匀分布着超细网状共晶组织。熔覆层有较强的裂纹敏感性,加入稀土元素后裂纹、气孔等缺陷有一定程度减少。Ni60AA基熔覆层的硬度和耐磨性较基体都有很大程度提高。Ni60AA熔覆层的显微硬度为750HV0.2~800HV0.2,约为H13钢基体的1.78倍,Ni60+5%WC、Ni60+5%WC+1%RE熔覆层的显微硬度为800HV0.2~900HV0.2,约为基体硬度的两倍。
[Abstract]:H13 (4Cr5MoSi V1) steel has good comprehensive properties and is suitable for manufacturing precision forging die, hot extrusion die, mandrel and die casting die. The failure of most dies begins from the surface first. Therefore, the service life of the die can be effectively improved by adopting appropriate ways to improve the surface structure and surface properties. In this paper, laser melting strengthening layer and laser cladding Co based, Ni based composite coating were prepared on the surface of H13 die steel by 5 kW continuous CO2 laser. Stat-6, St6 5%WC 1% RE, St6 2.5%WC 1% RE, St6 7.5%WC 1% RE, St6 10%WC 1%RE cobalt base alloy were deposited on the surface of H13 steel, respectively, and the cobalt base composite coating with uniform microstructure was prepared by coating Stat-6, St6 and 1% RE, St6 7.5%WC 1% RE, St6 Co-base cobalt-based alloy with uniform microstructure and fine microstructure on the surface of H13 steel. The nickel-based composite coatings coated by laser include Ni45,Ni45 5% WC, Ni45 5%WC 1%RE and Ni60AA,Ni60AA 5% WCand Ni60AA 5%WC 1% re. The microstructure, element distribution and phase composition of melting hardening layer and coating layer were systematically studied by optical microscope, scanning electron microscope, X-ray diffractometer and transmission electron microscope. The microhardness and wear properties of the coating were studied by means of microhardness tester and wear tester. The results show that: (1) the microstructure of H13 steel after laser melting is dendritic, cellular and martensite structure perpendicular to the direction of laser scanning from the surface to the subsurface, and the martensite structure in the high temperature tempering zone is coarse. And the content of retained Austenite decreases. After laser melting, no new phase is formed except the phase in the original structure. The depth of microhardened layer after laser melting is about 1.1 mm, and the highest hardness is 746HV0.2. The wear resistance of hardened layer is much higher than that of H13 steel treated by quenching and tempering. (2) Cobalt based laser cladding layer is metallurgical bonded with matrix, and the matrix phase structure of each coating layer is gamma-Co, enhanced phase structure, including (Mn,). The wear resistance of hardened layer is greatly improved compared with that of H13 steel treated by quenching and tempering. (2) Cobalt based laser coating layer is metallurgical bonded to matrix. Cr) 7C3, Cr23C6, Co CX and so on. After adding WC, the Co6W6C,WC,WC1-X phase was added to the reinforced phase of the coating layer. The addition of rare earth elements effectively controls the formation of cracks, and the macroscopic morphology is good. The microhardness of the coating is 56 HV0.2~710 HV0.2;. The friction and wear tests show that under the same conditions, the wear resistance from high to low is St6 7.5%WC 1% RE, St6 5%WC 1% RE, St6 2.5%WC 1% RE, St6, St6 10%WC 1% RE. H13 steel. (3) the main phase composition of Ni45 based coating is uniform and fine Fe Ni3,C6 (Cr,Co,Ni) 23, Mn23C6 and so on. The microhardness of Ni45 based coating layer is 525HV0.2 and 550HV0.2. the microhardness of Ni45 based coating layer is 525HV0.2 and 550HV0.2, and the microhardness of Ni45 based coating layer is 525HV0.2 and 550HV0.2, the microhardness of Ni45 based coating layer is 525HV0.2 and 550HV0.2, The wear resistance of the coating layer is much higher than that of H13 steel matrix, especially under high load, the wear mechanism of the coating layer is mainly abrasive wear and peeling wear, and there is no serious wear. The wear resistance of Ni60AA based coating layer was improved especially after adding WC. (4) the microstructure of Ni60AA based coating layer was uniform distribution of ultra-fine reticulated eutectic structure on the matrix of 纬-Ni solid solution. The hardness and wear resistance of Ni60AA based coating are much higher than those of matrix. The microhardness of Ni60AA coating is 750HV0.2 and 800HV0.2, and the hardness and wear resistance of Ni60AA based coating are 750HV0.2 and 800HV0.2. the hardness and wear resistance of Ni60AA based coating are 750HV0.2 and 800HV0.2. the hardness and wear resistance of Ni60AA coating are 750HV0.2 and 800HV0.2, respectively. The microhardness of Ni60 5%WC 1%RE coating is about 1.78 times of that of H13 steel matrix, and the microhardness of Ni60 5%WC 1%RE coating is about 800HV0.2 and 900HV0.2, which is about twice the hardness of H13 steel matrix.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG174.4

【相似文献】

相关期刊论文 前10条

1 叶诚;杜晓东;杨皓宇;;钢表面颗粒增强熔覆层的组织和性能[J];材料研究学报;2012年01期

2 林立,,薛群基;碳化铬金属陶瓷熔覆层的组织及性能研究[J];甘肃工业大学学报;1995年01期

3 石皋莲;石世宏;肖军艳;王晨;张甲;;环形激光占空比变化对熔覆层质量影响研究[J];热加工工艺;2013年20期

4 毛怀东;张大卫;刘泽福;;激光熔覆层网状添加物对裂纹控制的影响[J];天津大学学报;2008年05期

5 张昕;姜海;程华;孔德新;;宽带电弧熔覆层的缺陷控制[J];中国表面工程;2012年01期

6 林立,薛群基;自蔓延高温合成碳化铬金属陶瓷熔覆层[J];稀有金属材料与工程;1995年01期

7 刘喜明,连建设,赵宇;氩弧熔覆层的强化和耐磨性[J];机械工程材料;2000年03期

8 陈静,杨海欧,李延民,黄卫东;激光快速成形过程中熔覆层的两种开裂行为及其机理研究[J];应用激光;2002年03期

9 吴玉萍,李惠琪;稀土和工艺参数对等离子体熔覆层质量的影响[J];金属热处理;2002年04期

10 陈静,林鑫,王涛,杨海欧,黄卫东;316L不锈钢激光快速成形过程中熔覆层的热裂机理[J];稀有金属材料与工程;2003年03期

相关会议论文 前4条

1 王忠柯;郑启光;王涛;辜建辉;陶星之;潘清跃;石世宏;;激光表面熔覆层凝固组织特征形成过程[A];湖北省激光学会论文集[C];2000年

2 林立;薛群基;刘惠文;;碳化铬SHS熔覆层的磨料磨损机理研究[A];第六届全国摩擦学学术会议论文集(下册)[C];1997年

3 丁阳喜;王炳;;T10钢表面激光熔覆Ni60-La_2O_3熔覆层性能研究[A];第13届全国特种加工学术会议论文集[C];2009年

4 刘敬巍;于凡;李晓燕;;轴类零部件感应熔铸合金层修复工艺研究[A];走中国特色农业机械化道路——中国农业机械学会2008年学术年会论文集(上册)[C];2008年

相关重要报纸文章 前1条

1 李煜;功能性耐材支撑钢铁节能新突破[N];中国冶金报;2013年

相关博士学位论文 前9条

1 杨荣娟;火电厂用钛合金的表面改性及其表面失效特性研究[D];华北电力大学(北京);2014年

2 赵丽萍;耐磨损、耐腐蚀熔覆层的制备及其特性研究[D];华北电力大学;2012年

3 黄永俊;激光—感应复合熔覆工艺及机理研究[D];华中科技大学;2009年

4 陆伟;激光熔覆高速线材轧辊熔覆层开裂问题的研究[D];北京工业大学;2006年

5 赫庆坤;抽油泵柱塞表面激光合成TiC/NiCrBSi熔覆层研究[D];中国石油大学;2009年

6 国礼杰;等离子原位合成Fe基硼化物陶瓷熔覆层的研究[D];天津大学;2014年

7 杜宝帅;激光熔覆原位合成陶瓷相增强Fe基熔覆层研究[D];山东大学;2009年

8 朱庆军;Fe基非晶—纳米晶激光熔覆涂层研究[D];山东大学;2008年

9 董丹阳;钢的激光辅助渗硅过程与组织性能[D];东北大学;2008年

相关硕士学位论文 前10条

1 张喜冬;真空熔覆碳化钨增强镍基合金熔覆层组织及性能的研究[D];郑州大学;2015年

2 张光耀;铝合金表面激光熔覆稀土+Ni60合金涂层的研究[D];桂林电子科技大学;2015年

3 董梁;高速钢表面焊丝激光熔覆工艺及熔覆层性能研究[D];大连海事大学;2015年

4 石君齐;Ni基+陶瓷复合激光熔覆层的微观组织及性能[D];山东大学;2015年

5 王静;激光熔覆制备铁铝金属间化合物及其组织与性能研究[D];山东大学;2015年

6 周晓婷;CeO_2添加量对WC增强Ni基激光熔覆层组织和性能的影响[D];辽宁科技大学;2015年

7 史辰露;Mo-Nb系合金熔覆层的制备及其特性研究[D];华北电力大学;2015年

8 考锡俊;基于锥齿轮热锻模具的激光修复技术研究[D];辽宁工业大学;2016年

9 张吉庆;45号钢激光熔覆技术研究[D];辽宁工业大学;2016年

10 刘贤德;基于钛合金(TC4)材料的激光修复技术研究[D];辽宁工业大学;2016年



本文编号:2488510

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2488510.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户eb734***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com