型腔拐角铣削加工参数优化与研究
[Abstract]:Mould is widely used in automobile industry, mobile phone industry, aerospace industry and other fields, so the NC machining accuracy of die is an important research object. Because of the thousands of changes in the shape of the product parts, the shape of the die is very different, especially when the die has more corners, it increases the difficulty of machining. The internal and external transition connections of these angles, such as sharp angle, obtuse angle and so on, make the milling force fluctuation produced by the cutting tool cause the workpiece trembling and the machining efficiency decrease in the milling process. In this paper, the machining efficiency and milling force of plane corner milling are studied. First of all, after consulting the research status at home and abroad, there are three ways to optimize machining at the corner: (1) in the control aspect of NC system, the control mode of NC system, such as the interpolation characteristic of motion trajectory, speed prospective preprocessing, acceleration and deceleration motion control, etc. (2) in the aspect of tool path, the optimal path is considered, and the optimization of tool walking is considered. (3) in terms of process parameters, feed speed, cutting depth and spindle speed are mainly considered. The advantages and disadvantages of the three methods are compared, and the process parameters are adopted in this paper. Secondly, the relationship between the position parameters of milling cutter and workpiece when milling plane corner is analyzed, and the real trajectory of cutter edge in milling process is obtained, and the mathematical expression of the corresponding parameter variables in the process of plane corner milling is given by analyzing its real trajectory. Aiming at the typical corner of die cavity, the contact between milling cutter and workpiece in different stages is analyzed by using plane geometry theory, and the changing trend of instantaneous contact angle between milling cutter and workpiece is obtained, and the instantaneous milling area of cutting edge in the process of corner machining is solved according to the change of instantaneous contact angle, and the formula for calculating the instantaneous milling area of cutter edge is established. Thirdly, the simulation software DEFORM-3D, is used to simulate the designed comparative parameter scheme, and the milling load curve is obtained. according to the fluctuation of the curve, the statistical analysis method is selected, and the abnormal data in the simulation results are eliminated by using the "3 蟽" principle in MATLAB to ensure the reliability of the simulation data. Through the derivation of the functional relationship between milling force, milling cutter torque and feed rate and milling cutter speed, the exponential formula is transformed into a linear formula, which provides a basis for data analysis. Through MATLAB software, the regression analysis of the simulation data is carried out, and the prediction model of milling force and milling torque is obtained, and the reliability of the data is verified by analyzing the linear correlation and linear fitting degree of the data. Finally, the basic theory, form and design flow of particle swarm optimization algorithm (POS) are introduced in detail. According to the basic form of the algorithm, the mathematical model of optimization objective function and constraint conditions is deduced. According to the basic flow, the optimization program is compiled in MATLAB software. The iterative operation results show that the machining time of milling parameters after corner milling optimization is 54.75% and 58.20% less than that of empirical parameter setting.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG547
【参考文献】
相关期刊论文 前10条
1 郑龙燕;;基于粒子群算法的滚齿切削参数优化研究[J];机械设计与制造;2016年09期
2 张君;张立强;张凯;;面向连续短线段高速加工的圆弧转接前瞻控制算法[J];中国机械工程;2015年15期
3 贾永鹏;景旭文;刘传君;周宏根;;基于Deform-3D的船用柴油机机身深孔加工仿真研究[J];组合机床与自动化加工技术;2014年12期
4 王慧洁;李迎光;郝小忠;刘长青;高鑫;;飞机结构件槽特征加工摆线螺旋复合刀轨生成方法[J];南京航空航天大学学报;2014年05期
5 潘海鸿;杨增启;陈琳;董海涛;黄炳琼;谭华卿;;一种优化轨迹段间衔接速度的自适应前瞻控制[J];机械工程学报;2015年05期
6 陶建明;宋爱平;易旦萍;;基于插值样条的数控运动轨迹描述及平滑处理[J];组合机床与自动化加工技术;2014年01期
7 黄建;宋爱平;陶建明;尹玮中;;数控运动相邻加工段拐角的平滑转接方法[J];上海交通大学学报;2013年05期
8 吴春梅;;现代智能优化算法的研究综述[J];科技信息;2012年08期
9 樊骥;吴红梅;;基于最优化理论几种算法的比较[J];才智;2011年09期
10 吴世雄;李开柱;;复杂型腔模具高速铣削拐角加工的研究现状与分析[J];机械设计与制造;2010年09期
相关会议论文 前1条
1 张伟;李守智;高峰;刘振山;;几种智能最优化算法的比较研究[A];第二十四届中国控制会议论文集(下册)[C];2005年
相关博士学位论文 前3条
1 张玮;粒子群优化算法研究及在阵列天线中的应用[D];太原理工大学;2010年
2 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
3 孙全平;高速铣削数控编程基础算法的研究与实现[D];南京航空航天大学;2005年
相关硕士学位论文 前10条
1 刘飞;淬硬钢模具典型型面铣削过程有限元仿真[D];哈尔滨理工大学;2015年
2 史慧楠;基于铣削力预测的模具拐角加工误差补偿研究[D];哈尔滨理工大学;2015年
3 李鹏宇;面向能效的数控铣削加工工艺参数优化模型及方法研究[D];重庆大学;2014年
4 贾永鹏;船用柴油机关键零件深孔加工机理及切削参数优化技术研究[D];江苏科技大学;2014年
5 石垒;平底立铣刀加工模具拐角铣削力仿真研究[D];哈尔滨理工大学;2014年
6 尹晶晶;基于模糊神经网络的抽油井冲次智能调节方法研究[D];东北大学;2013年
7 李川;五节距销轨辊锻—模锻复合成形工艺模拟研究[D];太原科技大学;2013年
8 张传海;长轴深孔件热挤压工艺设计及数值模拟[D];吉林大学;2013年
9 宋健;基于DEFORM-3D的发动机缸体钻削仿真及切削参数优化[D];大连理工大学;2012年
10 李开柱;拐角高速铣削工艺试验及刀具轨迹优化研究[D];广东工业大学;2012年
,本文编号:2503246
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2503246.html