当前位置:主页 > 科技论文 > 铸造论文 >

大齿轮测量系统坐标系的建立技术研究

发布时间:2019-07-01 14:26
【摘要】:大齿轮是大型装备的关键传动部件,广泛应用于舰船、发电机组、矿山机械、航空航天等领域,在国民经济和国防建设中占据着十分重要的地位。因此,作为大齿轮制造质量保障的手段,其检测技术极具研究价值。本文就大齿轮的测量坐标系的建立问题,进行了深入研究。通过多种方案的对比分析,确定了标准量块法建立测量坐标系的设计方案,分析了各误差敏感项目对测量坐标系建立的影响,并通过实验进行了定性分析。主要研究内容如下:(1)设计了大齿轮测量坐标系建立的方案。本文提出标准量块法、小圆弧法和多站分时法三种测量坐标系建立的方案设计,经过分析对比,确定了标准量块法建立测量坐标系的设计方案,提高了测量坐标系的建立精度。(2)分析了标准量块法建立测量坐标系的精度。研究了示值误差、量块的几何误差、测量运动的几何误差、工作台倾斜误差、量块安装误差等误差敏感项对坐标系建立的影响,分别建立了各敏感项误差测量模型,进行了不确定度分析与评定和实例计算分析,实例计算结果表明:标准量块法满足4级精度大齿轮参数测量的要求。(3)开发了测量坐标系建立的软件。结合测量原理和精度分析,以及测量路径的规划,采用Visual C++6.0开发了标准量块法测量软件。(4)进行了标准量块法建立测量坐标系的实验。在C40齿轮测量中心上,分别得出了量块安装位置不同、量块长度不同、工作台倾斜、环境不同等因素对坐标系建立精度的影响,实验结果表明:量块长度在300mm以内时,R轴的测量坐标系建立精度在1μm以内,T轴精度在2.5μm以内。相同条件下,采用标准量块+自准直仪的优化方案所得实验结果表明:R轴坐标系建立精度在1μm以内,T轴精度在1μm以内,有效提高坐标系建立精度。
[Abstract]:Big gear is a key transmission part of large-scale equipment, which is widely used in the fields of ship, generator set, mining machinery, and aerospace, and occupies a very important position in national economy and national defense construction. Therefore, as a means of mass guarantee for large gear, its detection technology is very valuable. In this paper, the problem of the establishment of the measuring coordinate system of the large gear is studied. Through the comparative analysis of various schemes, the design scheme of the standard gauge block method to establish the measurement coordinate system is established, the influence of each error-sensitive item on the establishment of the measurement coordinate system is analyzed, and the qualitative analysis is carried out by the experiment. The main contents of the research are as follows: (1) The scheme of the establishment of the large gear measurement coordinate system is designed. In this paper, the design of three measurement coordinate systems based on the standard block method, the small circle arc method and the multi-station time division method are put forward, and the design scheme of the measurement coordinate system is established by the standard gauge block method through the analysis and comparison, and the establishment accuracy of the measurement coordinate system is improved. (2) The standard gauge block method is used to establish the precision of the measurement coordinate system. The influence of the error-sensitive items such as the error of the indicating value, the geometric error of the measuring block, the geometric error of the measuring motion, the inclination error of the working table and the installation error of the measuring block on the establishment of the coordinate system is studied. The analysis and evaluation of the uncertainty and the calculation of the case are carried out. The results of the examples show that the standard measuring block method meets the requirements of the measurement of the gear parameters with 4-degree precision. (3) The software developed by the measurement coordinate system is developed. In combination with the measurement principle and the precision analysis, and the planning of the measurement path, the standard measuring block method is developed with Visual C ++ 6.0. (4) The standard gauge block method is used to establish the measurement coordinate system. On the basis of C40 gear measurement, the influence of the installation position of the measuring block, the length of the measuring block, the inclination of the table and the different environment on the establishment precision of the coordinate system are obtained. The experimental results show that when the length of the measuring block is within 300 mm, The accuracy of the measurement coordinate system of the R-axis is within 1. m u.m, and the accuracy of the T-axis is within 2.5. m Under the same conditions, the experimental results obtained from the optimization scheme of the standard block + self-collimator show that the accuracy of the R-axis coordinate system is within 1. m u.m, the accuracy of the T-axis is within 1. m
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG86

【参考文献】

相关期刊论文 前10条

1 李海涛;郭俊杰;邓玉芬;王金栋;何欣荣;王兴;;数控机床几何精度的位姿测量原理[J];西安交通大学学报;2016年11期

2 赵军;叶婷;郭天太;孔明;王道档;陆首创;;大直齿圆柱齿轮几何中心确定方法及齿廓偏差计算[J];机械传动;2016年07期

3 张白;石照耀;林家春;;齿轮激光跟踪在位测量的姿态调整模型[J];哈尔滨工程大学学报;2014年05期

4 林家春;潘晨光;石照耀;张白;;特大型齿轮测量仿真及触碰检测[J];北京工业大学学报;2013年11期

5 石照耀;张白;林家春;魏华亮;陈显民;;特大型齿轮激光跟踪在位测量原理及关键技术[J];光学精密工程;2013年09期

6 林虎;Frank Hrtig;Karin Kniel;石照耀;;基于便携式坐标测量机的大齿轮测量方法[J];光学精密工程;2013年07期

7 石照耀;林虎;林家春;张白;;大齿轮测量:现状与趋势[J];机械工程学报;2013年10期

8 祝强;徐臻;;大型数控磨齿机中心定位算法研究[J];工具技术;2013年03期

9 苑惠娟;韩立美;孙永全;;大齿轮齿形偏差测量方法研究[J];机械设计与制造;2013年03期

10 胡弘;刘插旗;;研制高档数控机床 为国防能源工业服务——秦川机床工具集团为军工、航空航天、能源行业提供高档数控加工装备[J];中国军转民;2012年05期

相关博士学位论文 前1条

1 韩连福;齿轮测量中心若干关键技术研究[D];哈尔滨工业大学;2015年

相关硕士学位论文 前9条

1 董涛;采样策略对渐开线齿廓测量不确定度的影响[D];西安工业大学;2016年

2 闫昊;面向特大零件激光跟踪测量精度的提升方法研究[D];北京工业大学;2014年

3 李阳;坐标法齿轮齿形误差测量方法研究与精度分析[D];西安工业大学;2014年

4 付璇;VMC650m五轴数控机床几何误差测量与辨识方法的研究[D];西南交通大学;2011年

5 赵鹏;宝鸡市重点产业集群发展优势研究[D];西安建筑科技大学;2008年

6 龚宁博;大齿轮在位检测测量系统的开发[D];西安理工大学;2007年

7 杨轶;基于USB总线的三坐标测量机控制系统研究[D];浙江大学;2006年

8 刘宏旭;CNC齿轮测量中心几何误差补偿技术的研究[D];北京工业大学;2006年

9 朱万刚;大型齿轮在位综合测量原理与技术的研究[D];沈阳工业大学;2006年



本文编号:2508557

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2508557.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3a588***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com