当前位置:主页 > 科技论文 > 铸造论文 >

提高钛合金与304不锈钢激光焊接接头强度的工艺和机制

发布时间:2020-12-28 07:05
  本文研究了激光功率、过渡层厚度、复合过渡层和激光偏置等对Ti6Al4V合金与304不锈钢激光焊接接头的影响规律。采用扫描电子显微镜(SEM)、能谱(EDS)、X射线衍射(XRD)和电子背散射衍射(EBSD)等分析方法表征了焊接接头的断裂特征。研究结果表明,接头强度和断裂位置取决于激光功率。在激光功率为4 kW下获得的接头最大抗拉强度达到300兆帕,为最优功率。当激光功率超过4 kW时,接头抗拉强度下降。与激光功率为3 kW和6 kW的焊接接头相比,4 kW的焊接接头断裂表面与钛合金之间距离的增加,且较多的铜残留在钛合金板上,这表明在该功率下铜原子可以较远的渗入到钛合金表面从而提高钛合金与铜过渡层的结合强度。断口分析表明,与激光功率为3 kW和6 kW的焊接接头相比,4 kW的焊接接头的断裂面更粗糙。XRD结果表明,在4 kW焊接接头的断裂面上形成了αTi,(V)和(Ni)等固溶体相。4 kW的焊接接头的金属间化合物(IMCs)具有最大的厚度,其中包含不连续的脆性化合物和一些较软的钛-铜金属间化合物(IMCs),从而导致其机械强度高于其他样品。EBSD观察表明IMCs层的厚度和接头强度之... 

【文章来源】:上海交通大学上海市 211工程院校 985工程院校 教育部直属院校

【文章页数】:182 页

【学位级别】:博士

【文章目录】:
摘要
ABSTRACT
Chapter1 Introduction
    1.1 Phase microstructure in Fe-Ti phase diagram
    1.2 Application of Ti-SS joints
    1.3 Difficulties of direct joining Ti-SS
        1.3.1 Brittle intermetallics
        1.3.2 Difference in thermal expansion
        1.3.3 Difference in heat conductivity
    1.4 How to prevent brittle IMCs formation
    1.5 Interlayer engineering
    1.6 Interlayer suggestion for Ti-SS welding
        1.6.1 Single interlayer suggestion
        1.6.2 Composite interlayer suggestion
    1.7 Cu interlayer
    1.8 Solidification of MZ
    1.9 Computational thermodynamics
    1.10 Welding processes for Ti-SS joining
        1.10.1 Fusion welding
            1.10.1.1 Cold metal transfer
            1.10.1.2 Laser welding
            1.10.1.3 Laser-arc welding
            1.10.1.4 Electron beam welding
        1.10.2 Diffusion bonding
        1.10.3 Friction stir welding
        1.10.4 Explosive welding
        1.10.5 Brazing
        1.10.6 Roll welding
    1.11 Recent investigations on Ti-SS joints
    References
Chapter2 Experimental procedure
    2.1 Materials
    2.2 Sample preparation before welding
    2.3 Fiber laser welding equipment
    2.4 Sample preparation for microstructural observation
    2.5 Scanning electron microscope characterization
    2.6 X-ray diffraction characterization
    2.7 Electron backscatter diffraction characterization
    2.8 Mechanical testing
        2.8.1 Tensile testing
        2.8.2 Microhardness testing
    2.9 Offsetting
    2.10 Computational thermodynamics
    References
Chapter3 Enhanced mechanical strength of laser-welded joints of Ti6Al4V-304 SS by controlling heat input:experimental characterizations and thermodynamic simulations
    3.1 Direct welding of Ti6Al4V-304 SS by laser
    3.2 Weldability of Ti6Al4V-304 SS through single interlayers
    3.3 Mechanical properties of the joints
    3.4 Interface analysis
    3.5 Microstructure examination
    3.6 Characterization of fracture path edges
    3.7 Fractography
    3.8 Fracture Characterization
    3.9 Thermodynamic simulation of microstructural evolution
    3.10 Intermetallic layer thickness measurement
    Conclusion
    References
Chapter4 Intermediate interlayer thickening for development of laser-welded Ti6Al4V-304 SS joint strength
    4.1 Introduction
    4.2 An investigation based on single interlayer
        4.2.1 Mechanical properties of the joints
        4.2.2 Microstructure examination
        4.2.3 Fracture characterization
        4.2.4 Edge characterization after fracture
    4.3 An investigation based on double interlayers
    Conclusion
    References
Chapter5 High strength in Ti6Al4V-304 SS laser welded joints through the use of composite interlayers
    5.1 Introduction
    5.2 The weld beam appearance of composite interlayer experiments
    5.3 An investigation based on0.5 mm thick Cu
        5.3.1 Mechanical properties of the joints
        5.3.2 Fracture characterization
        5.3.3 Edge characterization after fracture
    5.4 An investigation based on1 mm thick Cu
    Conclusion
    References
Chapter6 Tailored mechanical strength of laser Ti6Al4V-304 SS weldments by offsetting
    6.1 Introduction
    6.2 Investigation based on single interlayer
        6.2.1 Mechanical properties of the joints
        6.2.2 Fracture characterization
        6.2.3 Edge characterization after fracture
    6.3 Investigation based on double interlayer
        6.3.1 Mechanical properties of the joints
        6.3.2 Fracture characterization
        6.3.3 Edge characterization after fracture
    Conclusion
    References
Chapter7 Relationship between the joint strength and potential compound(s)around the fracture path of Ti6Al4V-304 SS weldments
    References
Chapter8 Conclusion
    8.1 Conclusion
    8.2 Innovations
Acknowledgement
Publications


【参考文献】:
期刊论文
[1]采用铌中间层的钛合金与不锈钢的真空热轧连接界面的显微组织及性能(英文)[J]. 赵东升,闫久春,刘玉君,纪卓尚.  Transactions of Nonferrous Metals Society of China. 2014(09)
[2]填充金属对钛合金与不锈钢电子束焊接的影响(英文)[J]. 王廷,张秉刚,冯吉才.  Transactions of Nonferrous Metals Society of China. 2014(01)
[3]Formation of interfacial brittle phases sigma phase and IMC in hybrid titanium-to-stainless steel joint[J]. Min Ku LEE,Jung Gu LEE,Jong Keuk LEE,Sung Mo HONG,Sang Hoon LEE,Jin Ju PARK,Jae Woo KIM,Chang Kyu RHEE.  Transactions of Nonferrous Metals Society of China. 2011(S1)



本文编号:2943340

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2943340.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户43e99***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com