纳米铁金属力学行为及其变形机制的模拟研究
发布时间:2021-08-18 20:02
分子动力学作为一种常见的模拟分析材料性能的方法,其主要特点是能追踪原子的运动轨迹,从微观原子级别来分析并预测材料的宏观性能,从而为设计新材料提供理论依据。本文分别选取了以<110>和<100>为旋转轴的一系列双晶α-铁作为研究对象,通过分子动力学模拟方法研究了氢原子对α-铁在单轴拉伸加载下的力学性能的影响,并借助ovito软件对双晶α-铁在拉伸过程中的微观结构的变化过程进行分析,主要的研究内容以及结果如下:(1)研究了不同旋转角度下的∑3双晶α-铁的力学性能。研究结果表明:当旋转角度φ<45°时,双晶α-铁的弹性刚度、峰值应力和峰值应变皆随着旋转角度φ的增大而减小。拉伸加载中,Σ3原始晶界发生了偏转,从晶界处产生了形变孪晶界。随着应变的进一步加载,孪晶界间距逐渐增大。而旋转角度φ>45°的四个模型的弹性刚度几乎相同,但峰值应力和峰值应变随着旋转角的变化似乎并没有什么规律。φ>64.76°的三个模型在拉伸过程中,发生了去孪晶的过程。(2)研究了氢原子对∑3双晶α-铁的力学性能的影响。总的来说,双晶α-铁的峰值应力随着氢浓度的增加而降低。对于氢浓度...
【文章来源】:西安石油大学陕西省
【文章页数】:55 页
【学位级别】:硕士
【部分图文】:
/5重合位置点阵,此时位向差为37°Fig.1-1A1/5coincidentsitelatticeWhenthereisadifferenceof37°betweentwoadjacentcrystalgrains
图 1-2 重合位置点阵模型Fig. 1-2 The model of coincident site latticevw],旋转角度为 θ。r 和 s 是某一个,则有下述关系: =r2+s2(u2+v2+w2) tg = √ + + 原点阵晶胞参数为 a、b,重合位置点tan = 可以写成θ = 2 ( · ) 置点阵单胞与原单胞体积之比,故有
引入会抵消边界效应,使模型无限放表界面等,所要研究的部分则不能消期性边界条件,也就是自由边界条件和目的来进行选择,从而使得计算结函数的计算,我们可以得到材料在加目标参量(例如弹性模量,抗拉强度,每个原子所受的应力是其他剩余原很耗时。那么为了减少计算时间,就力时,只需要计算该原子周围一定范的原子对其的作用力。这是因为超出略不计。这里,通过几何关系的优化
【参考文献】:
期刊论文
[1]Ni晶界上金属和非金属元素的相互作用[J]. 方淑娟,石松鑫,祝令刚,周健. 北京航空航天大学学报. 2018(04)
[2]Strengthening effects of various grain boundaries with nano-spacing as barriers of dislocation motion from molecular dynamics simulations[J]. FuPing Yuan. Science China(Physics,Mechanics & Astronomy). 2017(03)
[3]纯铜[01■]倾侧型非共格Σ3晶界结构稳定性分子动力学模拟研究[J]. 董垒,王卫国. 物理学报. 2013(15)
[4]沉淀强化奥氏体合金的氢致断裂行为[J]. 李忠文,赵明久,戎利建. 材料研究学报. 2012(02)
[5]690合金中晶界网络分布的控制及其对晶间腐蚀性能的影响[J]. 李慧,夏爽,周邦新,陈文觉,刘廷光,胡长亮. 中国材料进展. 2011(05)
[6]晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J]. 马文,祝文军,陈开果,经福谦. 物理学报. 2011(01)
[7]铝氢脆破坏微观机制的分子动力学研究[J]. 沈海军,付光俊. 强度与环境. 2010(04)
[8]分子动力学模拟方法及其应用[J]. 杨萍,孙益民. 安徽师范大学学报(自然科学版). 2009(01)
[9]冷轧多晶纯镍中晶界对显微硬度和微观组织结构的影响[J]. 黄天林,陈宏生,刘伟,Andrew Godfrey,刘庆. 稀有金属. 2007(05)
硕士论文
[1]金属钨中级联碰撞的分子动力学模拟研究[D]. 杨晓丹.湖南大学 2014
本文编号:3350535
【文章来源】:西安石油大学陕西省
【文章页数】:55 页
【学位级别】:硕士
【部分图文】:
/5重合位置点阵,此时位向差为37°Fig.1-1A1/5coincidentsitelatticeWhenthereisadifferenceof37°betweentwoadjacentcrystalgrains
图 1-2 重合位置点阵模型Fig. 1-2 The model of coincident site latticevw],旋转角度为 θ。r 和 s 是某一个,则有下述关系: =r2+s2(u2+v2+w2) tg = √ + + 原点阵晶胞参数为 a、b,重合位置点tan = 可以写成θ = 2 ( · ) 置点阵单胞与原单胞体积之比,故有
引入会抵消边界效应,使模型无限放表界面等,所要研究的部分则不能消期性边界条件,也就是自由边界条件和目的来进行选择,从而使得计算结函数的计算,我们可以得到材料在加目标参量(例如弹性模量,抗拉强度,每个原子所受的应力是其他剩余原很耗时。那么为了减少计算时间,就力时,只需要计算该原子周围一定范的原子对其的作用力。这是因为超出略不计。这里,通过几何关系的优化
【参考文献】:
期刊论文
[1]Ni晶界上金属和非金属元素的相互作用[J]. 方淑娟,石松鑫,祝令刚,周健. 北京航空航天大学学报. 2018(04)
[2]Strengthening effects of various grain boundaries with nano-spacing as barriers of dislocation motion from molecular dynamics simulations[J]. FuPing Yuan. Science China(Physics,Mechanics & Astronomy). 2017(03)
[3]纯铜[01■]倾侧型非共格Σ3晶界结构稳定性分子动力学模拟研究[J]. 董垒,王卫国. 物理学报. 2013(15)
[4]沉淀强化奥氏体合金的氢致断裂行为[J]. 李忠文,赵明久,戎利建. 材料研究学报. 2012(02)
[5]690合金中晶界网络分布的控制及其对晶间腐蚀性能的影响[J]. 李慧,夏爽,周邦新,陈文觉,刘廷光,胡长亮. 中国材料进展. 2011(05)
[6]晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J]. 马文,祝文军,陈开果,经福谦. 物理学报. 2011(01)
[7]铝氢脆破坏微观机制的分子动力学研究[J]. 沈海军,付光俊. 强度与环境. 2010(04)
[8]分子动力学模拟方法及其应用[J]. 杨萍,孙益民. 安徽师范大学学报(自然科学版). 2009(01)
[9]冷轧多晶纯镍中晶界对显微硬度和微观组织结构的影响[J]. 黄天林,陈宏生,刘伟,Andrew Godfrey,刘庆. 稀有金属. 2007(05)
硕士论文
[1]金属钨中级联碰撞的分子动力学模拟研究[D]. 杨晓丹.湖南大学 2014
本文编号:3350535
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/3350535.html