Study and Development of a Projectile Anti-armors
发布时间:2021-07-26 22:38
在本文中,研究了一种串联式战斗部,该战斗部主要针对不同类型的装甲目标。该串联战斗部主要由两部分组成,第一部分是聚能射流战斗部,第二部分是穿甲战斗部。本文主要使用ANSYS AUTODYN有限元分析软件研究聚能射流战斗部的不同因素对弹丸整体性能和侵彻威力的影响规律。在论文的第一部分,主要通过理论分析和数值模拟,研究了聚能射流战斗部的形成过程。并分析了射流穿甲的三个阶段:开坑阶段、稳定侵彻阶段和末端侵彻阶段。研究和分析了影响射流成型的因素:药型罩厚度,药型罩顶角锥度和衬板形状。在论文的第二部分,研究了穿甲战斗部中的弹丸速度、弹芯直径、弹芯材料以及靶板上的预制穿孔对穿甲战斗部的侵彻性能的影响规律。本文主要研究的是弹丸垂直着靶的侵彻过程,而在以上考虑过的相关因素以外,还有聚能射流爆炸的冲击波等相关因素需要进一步研究。
【文章来源】:南京理工大学江苏省 211工程院校
【文章页数】:100 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Brief introduction
1.2 Classification of projectiles and armors
1.2.1 The small arm projectiles
1.2.2 Fragment simulators
1.2.3 Long rod penetrators
1.2.4 The shaped charge
1.2.5 Explosively formed projectiles
1.3 Materials and properties of armors
1.3.1 Metals
1.3.2 Ceramics
1.3.3 Polymers
1.3.4 Composite materials
1.4 Armor configurations
1.4.1 Passive armors
1.4.2 Reactive armors
1.4.3 Active armors
1.5 Shaped charge modeling
1.5.1 Shaped charge jet formation model
1.5.2 Shaped charge jet penetration models
1.6 Rod projectiles
1.6.1 Penetration and perforation of metals
1.6.2 Plate perforation
1.7 Literature review
2 Numerical simulations software
2.1 Introduction
2.2 Autodyn's solvers
2.2.1 Lagrange
2.2.2 Euler
2.2.3 ALE
2.2.4 SPH
2.3 Material models
2.3.1 Equation of State
2.3.2 The Constitutive Relations
2.3.3 Strength model
2.3.4 Failure Model
2.4 Conclusion
3 Tandem warhead
3.1 Introduction
3.2 Brief history of tandem warheads
3.3 Development Trend of Tandem Warhead
3.3.1 Improve the penetration capability of tandem warheads
3.3.2 Development of hollow charge warheads
3.3.3 Intelligence fuze
3.3.4 Multi-purpose, multi-effect, multi-carrier warheads
3.4 Conclusion
4 Simulation of tandem warhead first stage
4.1 Introduction
4.2 The main features of the shaped charge jet
4.3 Analysis of target plate penetration
4.3.1 Impact pit phase
4.3.2 Stable penetration phase
4.3.3 Breakthrough phase
4.4 Numerical simulation of target plate penetration by shaped charge
4.4.1 Description of geometrical and numerical model
4.5 Numerical simulation results and analysis
4.5.1 Influence of liner wall thickness
4.5.2 The influence of changing the cone angle
4.5.3 The influence of changing the liner geometrical shape
4.6 Conclusion
5 Simulation of tandem warhead second stage
5.1 Introduction
5.2 Penetration process
5.2.1 The transient phase
5.2.2 The primary phase of the penetration process
5.2.3 The secondary phase of the penetration process
5.2.4 After-flow phase
5.3 Simulation
5.3.1 Simulation Calculation Model
5.3.2 Rod body piercing process analysis
5.4 Analysis of factors that affect the effective piercing process of rod body
5.4.1 Influence of initial velocity of the rod body
5.4.2 Influence of the rod body diameter
5.4.3 Influence of the rod body material
5.4.4 Influence of the pre-perforated target
5.5 Conclusion
6 Conclusion
6.1 Main work and conclusion
6.2 Issues for further studies
Acknowledgements
References
【参考文献】:
期刊论文
[1]弹体高速侵彻混凝土的效应实验[J]. 何翔,徐翔云,孙桂娟,沈俊,杨建超,金栋梁. 爆炸与冲击. 2010(01)
[2]基于ANSYS/LS-DYNA的高速碰撞过程的数值模拟[J]. 谷长春,石明全. 系统仿真学报. 2009(15)
[3]Experimental investigation of penetration performance of shaped charge into concrete targets[J]. Cheng Wang Tianbao Ma Jianguo Ning State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China. Acta Mechanica Sinica. 2008(03)
本文编号:3304504
【文章来源】:南京理工大学江苏省 211工程院校
【文章页数】:100 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Brief introduction
1.2 Classification of projectiles and armors
1.2.1 The small arm projectiles
1.2.2 Fragment simulators
1.2.3 Long rod penetrators
1.2.4 The shaped charge
1.2.5 Explosively formed projectiles
1.3 Materials and properties of armors
1.3.1 Metals
1.3.2 Ceramics
1.3.3 Polymers
1.3.4 Composite materials
1.4 Armor configurations
1.4.1 Passive armors
1.4.2 Reactive armors
1.4.3 Active armors
1.5 Shaped charge modeling
1.5.1 Shaped charge jet formation model
1.5.2 Shaped charge jet penetration models
1.6 Rod projectiles
1.6.1 Penetration and perforation of metals
1.6.2 Plate perforation
1.7 Literature review
2 Numerical simulations software
2.1 Introduction
2.2 Autodyn's solvers
2.2.1 Lagrange
2.2.2 Euler
2.2.3 ALE
2.2.4 SPH
2.3 Material models
2.3.1 Equation of State
2.3.2 The Constitutive Relations
2.3.3 Strength model
2.3.4 Failure Model
2.4 Conclusion
3 Tandem warhead
3.1 Introduction
3.2 Brief history of tandem warheads
3.3 Development Trend of Tandem Warhead
3.3.1 Improve the penetration capability of tandem warheads
3.3.2 Development of hollow charge warheads
3.3.3 Intelligence fuze
3.3.4 Multi-purpose, multi-effect, multi-carrier warheads
3.4 Conclusion
4 Simulation of tandem warhead first stage
4.1 Introduction
4.2 The main features of the shaped charge jet
4.3 Analysis of target plate penetration
4.3.1 Impact pit phase
4.3.2 Stable penetration phase
4.3.3 Breakthrough phase
4.4 Numerical simulation of target plate penetration by shaped charge
4.4.1 Description of geometrical and numerical model
4.5 Numerical simulation results and analysis
4.5.1 Influence of liner wall thickness
4.5.2 The influence of changing the cone angle
4.5.3 The influence of changing the liner geometrical shape
4.6 Conclusion
5 Simulation of tandem warhead second stage
5.1 Introduction
5.2 Penetration process
5.2.1 The transient phase
5.2.2 The primary phase of the penetration process
5.2.3 The secondary phase of the penetration process
5.2.4 After-flow phase
5.3 Simulation
5.3.1 Simulation Calculation Model
5.3.2 Rod body piercing process analysis
5.4 Analysis of factors that affect the effective piercing process of rod body
5.4.1 Influence of initial velocity of the rod body
5.4.2 Influence of the rod body diameter
5.4.3 Influence of the rod body material
5.4.4 Influence of the pre-perforated target
5.5 Conclusion
6 Conclusion
6.1 Main work and conclusion
6.2 Issues for further studies
Acknowledgements
References
【参考文献】:
期刊论文
[1]弹体高速侵彻混凝土的效应实验[J]. 何翔,徐翔云,孙桂娟,沈俊,杨建超,金栋梁. 爆炸与冲击. 2010(01)
[2]基于ANSYS/LS-DYNA的高速碰撞过程的数值模拟[J]. 谷长春,石明全. 系统仿真学报. 2009(15)
[3]Experimental investigation of penetration performance of shaped charge into concrete targets[J]. Cheng Wang Tianbao Ma Jianguo Ning State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China. Acta Mechanica Sinica. 2008(03)
本文编号:3304504
本文链接:https://www.wllwen.com/kejilunwen/jingguansheji/3304504.html