基于云计算和机器学习的短期风电功率预测研究
[Abstract]:With the adjustment of energy structure in China, the installed capacity of wind power is increasing rapidly. Forecasting wind power accurately and timely can provide an important basis for the reasonable dispatch of power grid, reduce the abandonment of wind, and effectively improve the utilization rate of wind power. At the same time, with the improvement of the intelligent level of wind farm, the scale of wind power monitoring data is increasing, which poses a new challenge to the computational performance of traditional wind power prediction model. In recent years, artificial neural network (Ann), support vector machine (SVM) and its improved algorithms based on machine learning theory have been widely used in short-term wind power prediction, and there are many iterative computing scenarios in machine learning algorithms. The Spark distributed memory computing framework in cloud computing technology can efficiently perform iterative data processing and improve the performance of the algorithm. In view of the existing short-term wind power prediction model has some problems such as weak generalization, difficulty in determining the model structure and parameters, poor interpretability, etc., this paper synthesizes stochastic forest regression algorithm, M5P model tree, differential evolution algorithm, selective integration method, etc. A short-term wind power prediction method based on improved stochastic forest regression algorithm is proposed, and the algorithm is parallelized using Spark cloud computing platform. The main research work is as follows: (1) the traditional stochastic forest regression algorithm takes the classification regression tree as the meta-decision tree, aiming at the low prediction accuracy of the classification regression tree. In this paper, we use M5P model tree as meta-decision tree to construct multivariate linear regression model on leaf node. The prediction accuracy of meta-decision tree is improved effectively. (2) an improved differential evolutionary algorithm is proposed to solve the problem of partial poor prediction performance and low diversity of meta-decision trees in random forests. It is applied to the selective ensemble of stochastic forest meta-decision tree, and the partial optimal subset of meta-decision tree is selected among all meta-decision trees to form a new random forest. The final prediction results are obtained by weighted computation. (3) aiming at the high computational complexity of stochastic forest algorithm, the parallelism of stochastic forest algorithm and differential evolution algorithm is analyzed, and the cloud computing architecture is studied. The Spark distributed memory computing framework in cloud computing technology is adopted to improve the performance of the algorithm effectively. (4) the wind power monitoring data in Inner Mongolia is taken as an example. The proposed method is compared with the existing short-term wind power prediction algorithm and the traditional stochastic forest regression algorithm. At the same time, we use the CDH5 version of Cloudera company to build the cloud computing platform on the laboratory server, and test the parallelization performance of the proposed algorithm. The experimental results show that the proposed method has high prediction accuracy, generalization, interpretability and good parallelism.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM614;TP3;TP181
【参考文献】
相关期刊论文 前10条
1 钱政;裴岩;曹利宵;王婧怡;荆博;;风电功率预测方法综述[J];高电压技术;2016年04期
2 张颖超;郭晓杰;叶小岭;邓华;;一种短期风电功率集成预测方法[J];电力系统保护与控制;2016年07期
3 ;2015年中国风电装机容量统计[J];风能;2016年02期
4 ;2015年全球风电装机统计[J];风能;2016年02期
5 王保义;王冬阳;张少敏;;基于Spark和IPPSO_LSSVM的短期分布式电力负荷预测算法[J];电力自动化设备;2016年01期
6 杨锡运;关文渊;刘玉奇;肖运启;;基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J];中国电机工程学报;2015年S1期
7 马斌;张丽艳;;一种基于径向基神经网络的短期风电功率直接预测方法[J];电力系统保护与控制;2015年19期
8 吴潇雨;和敬涵;张沛;胡骏;;基于灰色投影改进随机森林算法的电力系统短期负荷预测[J];电力系统自动化;2015年12期
9 薛禹胜;郁琛;赵俊华;Kang LI;Xueqin LIU;Qiuwei WU;Guangya YANG;;关于短期及超短期风电功率预测的评述[J];电力系统自动化;2015年06期
10 王德文;孙志伟;;电力用户侧大数据分析与并行负荷预测[J];中国电机工程学报;2015年03期
相关硕士学位论文 前6条
1 杨剑南;基于人工神经网络的短期风功率预测研究[D];华北电力大学;2015年
2 孙科;基于Spark的机器学习应用框架研究与实现[D];上海交通大学;2015年
3 李霄;基于提升小波和最小二乘支持向量机的风电功率预测[D];上海交通大学;2015年
4 唐振坤;基于Spark的机器学习平台设计与实现[D];厦门大学;2014年
5 李贞贵;随机森林改进的若干研究[D];厦门大学;2013年
6 蔡林霖;随机森林的模型选择及其并行化方法[D];哈尔滨工业大学;2013年
,本文编号:2296195
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2296195.html