基于Spark的并行SVM算法研究
本文关键词:基于Spark的并行SVM算法研究,由笔耕文化传播整理发布。
【摘要】:随着数据规模的不断增加,支持向量机(SVM)的并行化设计成为数据挖掘领域的一个研究热点。针对SVM算法训练大规模数据时存在寻优速度慢、内存占用大等问题,提出了一种基于Spark平台的并行支持向量机算法(SP-SVM)。该方法通过调整层叠支持向量机(Cascade SVM)的合并策略和训练结构,并利用Spark分布式计算框架实现;其次,进一步分析并行操作算子的性能,优化算法并行化实现方案,有效克服了层叠模型训练效率低的缺点。实验结果表明,新的并行训练方法在损失较小精度的前提下,在一定程度上减少了训练时间,能够很好地提高模型的学习效率。
【作者单位】: 解放军理工大学指挥信息系统学院;
【关键词】: 并行计算 支持向量机 大规模数据 层叠模型 Spark
【基金】:国家自然科学基金项目(61473149)资助
【分类号】:TP18;TP338.6
【正文快照】: 1 引言支持向量机[1]是一种具有完整理论推导和优异实践性能的机器学习算法,被广泛应用于文本分类、人脸识别和图像检测等领域。近年来,许多SVM的软件模型得到了很好的发展,Libsvm[2]由于实际中应用效果良好而深受学者喜爱。但是当训练样本不断变大时,SVM算法训练的内存和时
【相似文献】
中国期刊全文数据库 前10条
1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期
2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期
3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期
4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期
5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期
6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期
7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期
8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期
9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期
10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期
中国重要会议论文全文数据库 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:447878
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/447878.html