衔铁组件压装精度分析及其实验研究
发布时间:2018-01-15 20:11
本文关键词:衔铁组件压装精度分析及其实验研究 出处:《哈尔滨工业大学》2012年硕士论文 论文类型:学位论文
更多相关文章: 衔铁组件 压装系统 压装精度分析 加工精度 压装实验
【摘要】:电液伺服阀是电液伺服系统中的核心部件,它的主要功能是实现微弱电信号到大功率液压信号的转换,而这种转换主要依靠其中的衔铁组件来完成,因此衔铁组件是电液伺服系统核心中的核心。衔铁组件由衔铁、弹簧管、挡板和反馈杆四个零件组成,,由于作用的重要性,对每个零件的加工精度以及组件的装配精度都有很高要求。但是国内目前对这方面的研究还比较薄弱,衔铁组件的装配成功率和装配效率都很低,这不利于我国电液伺服事业的发展。因此本文针对这一问题进行了相关的研究与分析。 首先,概括了衔铁组件压装精度的研究现状及压装的难点;结合课题组已有的压装机结构设计基础,完成了压装系统中机体的加工、装调及结构改进工作;以简洁可靠为目的,完成了压装系统的电路设计;在充分考虑实际应用的基础上,设计出了具有超差报错、智能调速、可位移补偿等诸多功能的多模式压装软件系统。 其次,利用理论分析的方法,得出压装过程中机体的偏转精度及工作台的偏转精度,然后通过实验的方法对这二者产生的综合偏转精度进行了验证;对位移传感器顶板处形变误差及机体弹性夹头与压头处的形变误差进行了分析研究,得出压装系统的位移控制误差以及相应的误差补偿规律。然后综合分析得出压装系统的精度已满足衔铁组件的压装要求。 再次,针对衔铁组件各零件的加工精度,分析其中影响衔铁组件装配精度的可能因素,并对每个因素对衔铁组件装配造成的影响进行定量分析;同时分析所使用的工装夹具,定量计算得出实际装配工况下其能够产生的最大协调角度和在此角度下弹簧管自身形变及这种形变下弹簧管的强度校核。 最后,使用本文所研制的压装系统进行某型号衔铁组件的压装实验。压装前,对弹簧管和衔铁的主要形位误差及配合面的表面形态进行测量;压装后,对衔铁组件的装配误差及零件配合面的表面形态进行测量。经过前后对比,验证了本文推导出的衔铁组件压装精度分析理论的正确性。同时确定实际中衔铁组件装配精度低的问题根源所在,并针对性的提出了改进建议。
[Abstract]:Electro-hydraulic servo valve is the core component of electro-hydraulic servo system. Its main function is to realize the conversion from weak electrical signal to high-power hydraulic signal, which is mainly completed by armature components. Therefore, armature assembly is the core of electro-hydraulic servo system. Armature assembly is composed of armature, spring tube, baffle and feedback rod, because of the importance of the role. The machining accuracy of each part and assembly accuracy of components are very high requirements, but the domestic research on this aspect is still relatively weak, armature assembly success rate and assembly efficiency are very low. This is not conducive to the development of electro-hydraulic servo industry in China. Firstly, the present situation of the research on the compaction accuracy of the armature assembly and the difficulties in the pressure-packing are summarized. Based on the structural design foundation of the presser, the machining, adjustment and improvement of the machine block in the pressure-loading system have been completed. For the purpose of simplicity and reliability, the circuit design of the pressure-mounting system is completed. On the basis of considering the practical application, a multi-mode pressing software system is designed, which has many functions, such as error detection, intelligent speed regulation, displacement compensation and so on. Secondly, the deflection accuracy of the body and the deflection precision of the worktable are obtained by using the method of theoretical analysis, and the synthetic deflection accuracy is verified by the experimental method. The deformation error at the top of the displacement sensor and the deformation error between the elastic chuck and the press head of the body are analyzed and studied. The displacement control error and the corresponding error compensation law of the pressure-mounting system are obtained, and the comprehensive analysis shows that the precision of the pressure-mounting system has met the requirements of the armature assembly. Thirdly, according to the machining accuracy of armature components, the possible factors that affect the assembly accuracy of armature components are analyzed, and the quantitative analysis of the effects of each factor on the assembly of armature components is carried out. At the same time, the fixture used is analyzed, and the maximum coordination angle can be obtained under the actual assembly condition, and the deformation of the spring tube itself and the strength check of the spring tube under this kind of deformation are obtained. Finally, the compression experiment of a certain type of armature assembly is carried out by using the pressure-mounting system developed in this paper. Before pressing, the main shape and position errors of the spring tube and armature and the surface morphology of the matching surface are measured. After pressing, the assembly error of the armature assembly and the surface shape of the fitting surface of the part are measured. The correctness of the precision analysis theory of armature assembly is verified in this paper. At the same time, the root of the problem of low assembly precision of armature assembly in practice is determined, and some suggestions for improvement are put forward.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH137.52
【参考文献】
相关期刊论文 前10条
1 赵静一,张齐生,王智勇,常开政,张勇;卧式轮轴压装机新型液压系统研制及可靠性分析[J];燕山大学学报;2004年05期
2 杨孟涛;金红伟;王晓梅;;新型液压压装机行程控制装置的设计[J];机床与液压;2011年02期
3 张舒勃;卢泽生;罗克然;陶崇德;;高精密伺服阀气动测量的研究[J];计量技术;1990年11期
4 李宝明;;机床爬行问题与消除方法[J];煤矿机械;2007年04期
5 刘燕敏,秦向明;伺服阀衔铁的加工工艺探讨[J];航天工艺;1999年02期
6 齐宏志,聂欣然;铁路货车滚动轴承压装机与轴承压装质量[J];铁道车辆;2001年08期
7 王立志;李元伶;;数控轮对自动压装机研制[J];铁道技术监督;2009年06期
8 郑元荣;;过盈配合件装配力的估算[J];机械工艺师;1992年07期
9 王晓晖;;伺服阀滑阀副磨削技术[J];液压气动与密封;2012年04期
10 左英杰;姚新港;;压装机液压系统改进[J];液压与气动;2012年04期
相关博士学位论文 前1条
1 马建伟;精密电液伺服阀几何因素与性能指标映射关系研究[D];大连理工大学;2011年
本文编号:1429870
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1429870.html