当前位置:主页 > 科技论文 > 机械论文 >

齿轮故障的动力学建模与轮齿裂纹刚度计算方法研究

发布时间:2018-02-12 20:15

  本文关键词: 齿轮故障 动力学建模 轮齿裂纹 刚度计算 动态分析 出处:《重庆大学》2012年硕士论文 论文类型:学位论文


【摘要】:齿轮传动是最重要而且应用最广的机械传动。齿轮传动失效是齿轮箱常见故障。齿轮故障产生后,将直接影响设备的安全可靠运行,降低生产效率或造成人员伤亡等严重后果。为了预防因齿轮突发故障造成的灾难性事故,有必要研究齿轮故障的振动机理与特征。但是,由于齿轮传动系统的工作状态极为复杂,不仅载荷工况和动力装置多种多样,存在由原动机或负载方面引入的外部激励,而且也存在由时变啮合刚度、齿轮传动误差和故障所引起的内部激励等,给齿轮故障的振动机理与特征带来了极大的困难,严重制约了齿轮故障预防技术的发展。因此,齿轮故障的动力学建模与轮齿裂纹刚度计算方法研究,具有重要的理论价值和实际工程价值。 论文在研究直齿圆柱齿轮时变啮合刚度的基础上,分析了齿根裂纹对啮合刚度的影响,同时在现有齿根裂纹模型的基础上通过公式推导建立了分度圆裂纹的齿轮啮合刚度计算模型。分析了裂纹位置的不同对轮齿啮合刚度的影响。同时建立了6自由度齿轮系统动力学模型,在对齿轮传动装置进行动力学特性仿真的基础上,讨论并获得了故障齿轮在各工况下的动力学特性。主要开展的工作如下: ①利用能量法计算了正常齿轮和齿根裂纹齿轮的时变啮合刚度,讨论了不同深度裂纹对轮齿啮合刚度的影响。建立了正常齿轮和齿根裂纹齿轮的有限元模型,计算得出齿轮啮合刚度并与能量法结果进行验证对比;通过建立更符合实际情况的曲线型齿根裂纹的齿轮有限元模型,分析并讨论了齿根裂纹直线型假设带来的啮合刚度计算误差。 ②通过对现有的齿根裂纹刚度模型的分析,推导并建立了分度圆处裂纹的齿轮啮合刚度计算模型。通过这种新模型计算了不同深度的分度圆裂纹齿轮啮合刚度,得出了分度圆裂纹对齿轮啮合刚度的影响规律。并将其与齿根裂纹齿轮啮合刚度进行对比,讨论两者的差别。建立了分度圆裂纹的有限元模型,通过计算啮合刚度验证了分度圆裂纹齿轮刚度模型的准确性。 ③建立了单级6自由度直齿轮系统动力学模型,引入故障激励参数,求解了正常和故障齿轮在不同工况下的的动态响应,并利用信号时域和频域分析方法,分析动态仿真的结果,获得了故障与振动响应之间的影响规律。设计并搭建齿轮故障模拟试验台,将仿真结果与试验结果进行了对比。
[Abstract]:Gear transmission is the most important and widely used mechanical transmission. The failure of gear transmission is the common fault of gear box. It is necessary to study the vibration mechanism and characteristics of gear fault in order to prevent the catastrophic accident caused by sudden fault of gear. The working state of gear transmission system is very complex, not only the load working conditions and power devices are varied, but also the external excitation introduced by the prime mover or load, but also the time-varying meshing stiffness. The error of gear transmission and the internal excitation caused by fault bring great difficulties to the vibration mechanism and characteristics of gear fault, which seriously restrict the development of gear fault prevention technology. The dynamic modeling of gear failure and the calculation method of gear tooth crack stiffness have important theoretical value and practical engineering value. On the basis of studying the time-varying meshing stiffness of spur gear, the influence of tooth root crack on meshing stiffness is analyzed in this paper. On the basis of the existing tooth root crack model, the calculation model of gear meshing stiffness of indexing circular crack is established by formula derivation. The influence of crack position on gear tooth meshing stiffness is analyzed. Degree gear system dynamics model, Based on the simulation of the dynamic characteristics of the gear transmission, the dynamic characteristics of the faulty gear under various working conditions are discussed and obtained. The main work is as follows:. 1. The time-varying meshing stiffness of normal gear and tooth root cracked gear is calculated by energy method, and the influence of different depth cracks on gear tooth meshing stiffness is discussed. The finite element model of normal gear and tooth root crack gear is established. The meshing stiffness of the gear is calculated and compared with the results of the energy method, and the finite element model of the curved tooth root crack is established. The calculation error of meshing stiffness caused by linear model assumption of tooth root crack is analyzed and discussed. Based on the analysis of the existing tooth root crack stiffness model, the gear meshing stiffness calculation model of the crack in the indexing circle is derived and established. The meshing stiffness of the gear with different depth is calculated by this new model. The influence law of indexing circular crack on gear meshing stiffness is obtained, and the difference between the meshing stiffness of gear with tooth root crack and that of indexing circular crack is discussed, and the finite element model of indexing circular crack is established. The accuracy of the indexing circular crack gear stiffness model is verified by calculating the meshing stiffness. (3) the dynamic model of a single-stage 6-DOF spur gear system is established, and the dynamic response of the normal gear and the fault gear under different working conditions is solved by introducing the fault excitation parameters. The time-domain and frequency-domain analysis methods of the signal are used. The influence law between fault and vibration response is obtained by analyzing the results of dynamic simulation, and a gear fault simulation test-bed is designed and built, and the simulation results are compared with the test results.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH132.41;TH165.3

【参考文献】

相关期刊论文 前6条

1 王超,覃文洁;齿轮轮齿三维动力接触有限元分析[J];车辆与动力技术;2004年02期

2 宋雪萍,于涛,李国平,闻邦椿;齿轮轴系弯扭耦合振动特性[J];东北大学学报;2005年10期

3 黄福祥;程里;唐丽文;杨惠;;20CrMnMo钢渗碳重载齿轮表面裂纹分析[J];金属热处理;2010年09期

4 谢海东,周照耀,夏伟,邱诚,张文;斜齿轮传动中啮合冲击数值研究[J];机械传动;2005年03期

5 张延超;邵忍平;刘宏昱;;裂纹故障齿轮动力特性的有限元分析与仿真[J];机械制造;2005年12期

6 林腾蛟;蒋仁科;李润方;刘文;;船用齿轮箱动态响应及抗冲击性能数值仿真[J];振动与冲击;2007年12期

相关博士学位论文 前2条

1 杨晓宇;齿轮传动系统动力学特性的有限元分析及试验方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2005年

2 孔德文;大型齿轮传动装置动力学及故障诊断技术研究[D];吉林大学;2008年

相关硕士学位论文 前1条

1 刘梦军;单对齿轮系统间隙非线性动力学研究[D];西北工业大学;2002年



本文编号:1506466

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1506466.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9af74***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com