当前位置:主页 > 科技论文 > 机械论文 >

再制造产品拆解问题研究

发布时间:2018-02-26 09:55

  本文关键词: 再制造 产品拆解 拆解序列 多色集合 遗传算法 出处:《西安工程大学》2012年硕士论文 论文类型:学位论文


【摘要】:随着科技的发展和人们个性化消费需求的增强,各种新产品层出不穷,产品生命周期也越来越短,大量产品由于功能过时或报废而迅速淘汰。与此同时,地球有限的资源在工业化进程中日益减少,甚至某些资源面临枯竭,但人类对资源的需求反而越来越大。为了解决资源匮乏与报废产品迅速垃圾化而产生严重浪费这样一对矛盾,一种可持续发展生产方式——再制造工程应运而生。再制造是一种符合循环经济理念,节约资源的先进制造,也是一种保护环境的绿色制造,它能够赋予废旧资源更高的附加值,是再循环的最佳形式。“产品拆解”是再制造过程的首要环节和关键问题,对拆解环节合理地规划能够有效减少拆解成本、提高拆解效率,,减少污染,提高产品的再利用率并提高再制造过程的效率。因此,对再制造产品拆解问题的研究具有重要的理论意义和实践价值。 鉴于再制造产品拆解研究的重要性,论文以拆解环节中的拆解建模、拆解序列规划和优化为主要研究对象,借鉴国内外再制造及拆解环节研究成果,从再制造及拆解环节基本理论入手,阐述了循环经济理念和基于循环经济理念的再制造概念及再制造工艺流程;通过对再制造工艺流程的分析,确定了再制造过程中的关键问题,并详细论述了再制造产品拆解环节的相关问题。在此基础上,对拆解建模中的常用拆解信息模型进行了总结和分析,主要有基于图论的拆解信息模型、基于矩阵论的拆解信息模型以及基于Petri网的拆解信息模型;通过对上述几类拆解模型的分析和探讨,论文提出基于多色集合理论的产品拆解信息模型的构建方法:首先构建产品的无向图,在无向图的基础上构建了零件可能位移模型,从可能位移模型中提取零件的可能位移方程,并根据拆解序列生成算法生成产品可行的拆解序列。将遗传算法引入到拆解序列优化当中,以上述生成的可行拆解序列作为遗传优化算法的初始种群;优化过程主要考虑拆解工具变换和拆解方向变化这两个评价标准,将拆解用时最短作为优化目标并建立适应度函数;设计了比例选择、PPX交叉、位置倒置变异等一系列遗传操作并给出了详细的遗传算法优化流程。最后以机用虎钳拆解为例,对上述基于多色集合理论的拆解模型和基于遗传算法的拆解序列优化进行了实证研究,根据优化流程使用MATLAB6.5编写遗传算法优化程序从而得到最优的拆解序列,验证了模型和算法的可行性。
[Abstract]:With the development of science and technology and the enhancement of individual consumption demand, various new products emerge in endlessly, the product life cycle is shorter and shorter, a large number of products are rapidly eliminated because of outdated functions or scrapping. At the same time, The limited resources of the Earth are dwindling in the course of industrialization, and even some of them are facing depletion, In order to solve the contradiction between the shortage of resources and the rapid waste of end-of-life products, A sustainable development mode of production-remanufacturing engineering emerged as the times require. Remanufacturing is an advanced manufacturing that conforms to the concept of circular economy and saves resources, and it is also a green manufacturing that protects the environment. It can give higher added value to waste and used resources. It is the best form of recycling. "disassembly of products" is the primary link and key problem in the process of remanufacturing. Reasonable planning of dismantling links can effectively reduce the cost of dismantling, improve the efficiency of dismantling, and reduce pollution. Therefore, it is of great theoretical and practical value to study the problem of remanufacturing product disassembly. In view of the importance of the research on remanufacturing product disassembly, this paper takes the disassembly modeling, disassembly sequence planning and optimization as the main research object, and draws lessons from the domestic and foreign research results of the remanufacturing and dismantling links. Starting with the basic theory of remanufacturing and dismantling, this paper expounds the concept of recycling economy and the concept of remanufacturing and remanufacturing process flow based on the concept of circular economy, and through the analysis of the process flow of remanufacturing, The key problems in the process of remanufacturing are determined, and the related problems in the process of remanufacturing product disassembly are discussed in detail. On this basis, the common disassembly information models in dismantling modeling are summarized and analyzed. There are disassembly information model based on graph theory, disassembly information model based on matrix theory and disassembly information model based on Petri net. In this paper, a method of constructing product disassembly information model based on polychromatic set theory is proposed. Firstly, the undirected graph of product is constructed, and the possible displacement model of parts is constructed on the basis of undirected graph. The possible displacement equations of parts are extracted from the possible displacement model, and the feasible disassembly sequences of the products are generated according to the disassembly sequence generation algorithm. The genetic algorithm is introduced into the disassembly sequence optimization. The feasible disassembly sequence is used as the initial population of the genetic optimization algorithm, and the optimization process mainly considers the two evaluation criteria of the disassembly tool transformation and the disassembly direction change, and takes the shortest disassembly time as the optimization objective and establishes the fitness function. A series of genetic operations such as proportional selection PPX crossover, position inversion mutation and so on are designed and detailed genetic algorithm optimization flow is given. Finally, taking machine vice disassembly as an example, The above disassembly model based on polychromatic set theory and the disassembly sequence optimization based on genetic algorithm are studied empirically. According to the optimization process, genetic algorithm optimization program is written with MATLAB6.5 to obtain the optimal disassembly sequence. The feasibility of the model and algorithm is verified.
【学位授予单位】:西安工程大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH16

【参考文献】

相关期刊论文 前10条

1 于兰芳;;图的矩阵表示及性质[J];承德民族师专学报;2006年02期

2 刘志峰;张少亭;宋守许;柯庆镝;;报废汽车拆卸回收的经济性分析[J];合肥工业大学学报(自然科学版);2009年03期

3 陈峗;;我国再制造产业发展:困境与突围[J];江东论坛;2011年01期

4 闫利军;李宗斌;高新勤;赵姗姗;;一种基于多色集理论的产品拆卸模型研究[J];计算机集成制造系统;2007年02期

5 孟鹏,段广洪,汪劲松,李方义;基于图论的产品拆卸回收建模与评估系统[J];机械工程学报;2002年S1期

6 潘晓勇,骆祥峰,刘光复,刘志峰,王淑旺;基于层次概率模糊认知图的产品拆卸序列研究[J];机械工程学报;2003年04期

7 谢立伟,钟骏杰,范世东,姚玉南;再制造物流供应链的研究[J];中国制造业信息化;2004年10期

8 徐滨士,马世宁,刘世参,朱胜,王海斗;绿色再制造工程在军用装备中的应用[J];空军工程大学学报(自然科学版);2004年01期

9 计维斌;叶年业;倪计民;;我国再制造发动机发展现状分析[J];内燃机与配件;2011年07期

10 郭伟祥;刘光复;刘志峰;黄海鸿;;产品材料回收经济性分析与决策[J];农业机械学报;2006年12期

相关硕士学位论文 前8条

1 李梁;机电产品可拆卸性设计理论研究及实现[D];安徽理工大学;2005年

2 游金松;废旧产品再制造逆向物流管理策略研究[D];武汉理工大学;2007年

3 黄进永;面向维修的产品拆卸序列规划及拆卸评估技术研究[D];南京航空航天大学;2006年

4 卞世春;机械产品回收再制造工厂规划与设计研究[D];合肥工业大学;2008年

5 章小红;基于蚁群算法的产品拆卸序列规划方法研究[D];华中科技大学;2007年

6 韩建升;基于遗传算法的拆卸序列规划研究[D];华中科技大学;2007年

7 王虎;基于UG的汽车产品拆解模型构建及信息提取方法研究[D];吉林大学;2009年

8 张倩;河北省循环经济发展评价研究[D];河北大学;2009年



本文编号:1537530

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1537530.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f8a74***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com