板条式水润滑橡胶合金轴承润滑特性及热结构耦合分析
本文选题:水润滑 切入点:橡胶轴承 出处:《重庆大学》2011年硕士论文 论文类型:学位论文
【摘要】:以水为润滑介质的板条式水润滑橡胶合金轴承,与传统以油为润滑介质的金属轴承的润滑机理有所不同。水的黏度只有油1/100,当供水压力高,轴颈转速高时,容易产生紊流,因此在对润滑模型进行有限元分析时,不能将水膜假设为层流模型。橡胶为低弹性模量材料,在流体动压润滑时,橡胶变形量大,不能像金属轴承那样忽略不计。橡胶弹性变形的退让使得轴的偏心率可以大于1。板条式水润滑橡胶合金轴承沟槽的存在,使得水膜压力较油润滑低,一方面由于温度对橡胶材料的力学特性影响较大,需要沟槽中的冷却水将产生的热量带走;另一方面沟槽为橡胶变形提供空间,改善橡胶与铜粘接面的受力。 论文针对板条式水润滑橡胶合金轴承特殊的润滑机理,利用Workbench CFX有限元软件对轴承润滑模型进行3D数值仿真分析。论文从转速、偏心率、橡胶材料、板条结构等角度对水膜压力分布、水膜流场分布、水膜厚度等方面深入研究了板条式水润滑轴承的流体动压润滑性能。由于橡胶轴承动压润滑过程是一个双向的流固耦合,因此橡胶的弹性变形,应力分布等也是论文研究的重点。 随后通过实验研究了温度对橡胶材料性能的影响,因为当轴承系统供水系统出现故障或是轴承系统出现过载时,轴与轴承之间处于干摩擦状态。当轴承系统处于干摩擦状态时不仅摩擦系数会增大而加速轴与轴承的磨损,还会使轴承温度升高,改变橡胶的力学性能,加速橡胶老化,甚至出现烧焦现象。 根据实验得到的数据,论文进一步利用ABAQUS有限元软件对板条式水润滑橡胶合金轴承,在干摩擦状态下的热结构耦合模型进行了分析。通过分析论文研究了板条式水润滑橡胶合金轴承在干摩擦工况时轴承系统接触面的温度分布、接触应力分布以及能量随时间的变化。 论文内容得到国家自然科学基金面上项目“大尺寸高比压水润滑轴承的创新设计理论与方法”(项目编号:50775230)的支持,拟通过上述研究对板条式水润滑橡胶合金轴承的润滑机理和干摩擦热结构耦合的相关研究方法提供新的借鉴。
[Abstract]:The lubricating mechanism of sheet water lubricated rubber alloy bearing with water as lubricating medium is different from that of metal bearing with traditional oil lubricating medium. The viscosity of water is only 1 / 100 of oil. When the water supply pressure is high and the rotation speed of shaft neck is high, turbulence is easy to occur. Therefore, in the finite element analysis of lubrication model, water film can not be assumed as laminar flow model. Rubber elastic deformation makes the eccentric ratio of shaft greater than 1.The water film pressure is lower than oil lubrication due to the existence of grooves in sheet-type water lubricated rubber alloy bearings. On the one hand, because of the influence of temperature on the mechanical properties of rubber materials, it is necessary to take away the heat produced by cooling water in the grooves; on the other hand, the grooves provide space for rubber deformation and improve the stress on the rubber and copper bonding surfaces. Aiming at the special lubrication mechanism of strip water lubricated rubber alloy bearing, this paper uses Workbench CFX finite element software to carry on 3D numerical simulation analysis to the bearing lubrication model, from rotational speed, eccentricity, rubber material, In this paper, the hydrodynamic lubrication performance of strip water lubricated bearing is studied in terms of water film pressure distribution, water film flow field distribution, water film thickness, etc., because the hydrodynamic lubrication process of rubber bearing is a two-way fluid-solid coupling. Therefore, elastic deformation and stress distribution of rubber are also the focus of this paper. Then the effect of temperature on the properties of rubber material is studied experimentally, because when the water supply system of the bearing system fails or the bearing system is overloaded, When the bearing system is in a dry friction state, not only the friction coefficient will increase and the wear between the shaft and bearing will be accelerated, but also the bearing temperature will be raised, the mechanical properties of rubber will be changed, and the aging of rubber will be accelerated. Even scorching occurs. According to the experimental data, the paper further uses the ABAQUS finite element software to the strip type water lubricated rubber alloy bearing. The coupling model of thermal structure under dry friction state is analyzed. The temperature distribution of the contact surface of strip water lubricated rubber alloy bearing under dry friction condition is studied. The distribution of contact stress and the change of energy with time. The content of this paper is supported by the project of "innovative Design Theory and method of large size and High specific pressure Water Lubricating bearing" (Project No.: 50775230), supported by the National Natural Science Foundation of China. This study is intended to provide a new reference for the lubrication mechanism of strip water lubricated rubber alloy bearings and the related research methods for the coupling of dry friction and heat structure.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH133.3
【参考文献】
相关期刊论文 前10条
1 王贤烽;林青;胡茂横;唐育民;海鹏洲;;水润滑橡胶尾管轴承的性能研究[J];船舶工程;1993年04期
2 王优强,李鸿琦,佟景伟;水润滑橡胶轴承[J];轴承;2002年10期
3 张霞;王新荣;牛国玲;张连军;;水润滑轴承的研究现状与发展趋势[J];装备制造技术;2008年01期
4 衣雪娟,王优强;水润滑轴承研究进展[J];机床与液压;2004年04期
5 刘佐民;M50 高速钢高温摩擦磨损特性的研究[J];摩擦学学报;1997年01期
6 陈战,王家序,秦大同;以水作润滑介质的摩擦副的研究[J];农业机械学报;2001年03期
7 王优强,杨成仁;水润滑橡胶轴承研究进展[J];润滑与密封;2001年02期
8 王家序,余江波,田凡,邹丞;水润滑塑料合金轴承数值分析的多重网格法[J];润滑与密封;2005年04期
9 郭力;;水润滑轴承研究的进展[J];精密制造与自动化;2007年01期
10 王伟,邓涛,赵树高;橡胶Mooney-Rivlin模型中材料常数的确定[J];特种橡胶制品;2004年04期
相关博士学位论文 前3条
1 段芳莉;橡胶轴承的水润滑机理研究[D];重庆大学;2002年
2 陈战;水润滑轴承的摩擦磨损性能及润滑机理的研究[D];重庆大学;2003年
3 彭晋民;水润滑塑料合金轴承润滑机理及设计研究[D];重庆大学;2003年
相关硕士学位论文 前2条
1 刘琴华;船舶尾轴承水润滑特性数值计算与试验研究[D];武汉理工大学;2008年
2 卢磊;水润滑橡胶合金轴承接触及润滑特性分析[D];重庆大学;2010年
,本文编号:1629637
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1629637.html